Features - Qualified for Automotive Applications - 1.65V to 3.6V on A Port and 1.65V to 3.6V on B Port - VCCA may be greater than, equal to, or less than VCCB - High-Speed with 140 Mb/s Guaranteed Date Rate - 100 pF Capacitive Drive Capability - Low Bit-to-Bit Skew - Overvoltage Tolerant Enable and I/O Pins - Non-preferential Power-Up Sequencing - Power-Off Protection - ESD protection exceeds 4000V HBM - AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities. - Extended Temperature: -40°C to +125°C ### **Applications** - Automotive Infotainment System - Advanced Driver Assistance Systems (ADAS) - Telematics ### **Block Diagram** Figure 1 : Block Diagram #### **Description** The RS7LS304Q is an automotive qualified 4-bit configurable dual-supply autosensing bidirectional level translator that does not require a direction control pin. The B and A ports are designed to track two different power supply rails, VCCB and VCCA respectively. The RS7LS304Q offers the feature that the values of the VCCB and VCCA supplies are independent. Design flexibility is maximized because VCCA can be set to a value either greater than or less than the VCCB supply. The RS7LS304Q has high output current capability, which allows the translator to drive high capacitive loads such as most high frequency EMI filters. Another feature of the RS7LS304Q is that each An and Bn channel can function as either an input or an output. An Output Enable (EN) input is available to reduce the power consumption. The EN pin can be used to disable both I/O ports by putting them in 3-state which significantly reduces the supply current. ### Ordering Information: | Part Number | Package | Description | |-------------|----------|-------------| | RS7LS304QLE | TSSOP-14 | 5mmX4.4mm | Notes: [1] E = Pb-free and Green # **Pin Configuration** ### TSSOP-14(Top View) | Pin Name | TSSOP-14 | Description | |----------|----------|---| | VCCA | 1 | A-port supply voltage.1.65V ≤ VCCA ≤3.6 V | | A1 | 2 | Input/output A. Referenced to VCCA. | | A2 | 3 | Input/output A. Referenced to VCCA | | A3 | 4 | Input/output A. Referenced to VCCA | | A4 | 5 | Input/output A. Referenced to VCCA | | GND | 7 | Ground. | | OE | 8 | Output enables (active High). | | Pull C | | Pull OE low to place all outputs in 3-state mode. | | B4 | 10 | Input/output B. Referenced to VCCB | | В3 | 11 | Input/output B. Referenced to VCCB | | B2 | 12 | Input/output B. Referenced to VCCB | | B1 | 13 | Input/output B. Referenced to VCCB | | VCCB | 14 | B-port supply voltage.1.65V ≤ VCCB ≤3.6V | | NC | 6,9 | Not Connect | ### **Maximum Ratings** | Symbol | Parameter | Min | TYP | Max | Unit | |--------|--|------|-----|------|------| | Tstore | Storage Temperature | -65 | - | +150 | °C | | VCCA | DC Supply Voltage port B | -0.3 | - | 4.0 | V | | VCCB | DC Supply Voltage port A | -0.3 | - | 4.0 | V | | VIOB | Vi(A) referenced DC Input / Output Voltage | -0.3 | - | 4.0 | V | | VIOB | Vi(B) referenced DC Input / Output Voltage | -0.3 | - | 4.0 | V | | VEN | Enable Control Pin DC Input Voltage | -0.3 | - | 4.0 | V | | Ishort | Short circuit duration (I/O to GND) | | | 50 | mA | #### Notes: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ### **Recommended operation conditions** | Symbol | Parameter | Min | TYP | Max | Unit | |--------|------------------------------------|------|-----|------|------| | VCCA | VCCA Positive DC Supply Voltage | 1.65 | - | 3.6 | V | | VCCB | VCCB Positive DC Supply Voltage | 1.65 | - | 3.6 | V | | VEN | Enable Control Pin Voltage | GND | - | 3.6 | V | | VIO | I/O Pin Voltage | GND | - | 3.6 | V | | Δt /ΔV | Input transition rise or fall time | - | - | 10 | ns/V | | TA | Operating Temperature Range | -40 | - | +125 | °C | ## **DC Electrical Characteristics** Unless otherwise specified, -40°C≤T_A≤125°C, 1.65V≤V_{CCA}≤3.6V , 1.65V≤V_{CCB}≤3.6V | | _ | | | | -40°C to +125°C | | | | |-------------------|---|---|----------------------|----------------------|-----------------|------|----------|------| | Symbol | Parameter | Test Conditions | V _{CCB} (V) | V _{CCA} (V) | Min. | Тур. | Max. | Unit | | V _{IHB} | B port Input HIGH Voltage | _ | 1.65-3.6 | 1.65-3.6 | 2/3*VCCB | _ | _ | V | | V_{ILB} | B port Input LOW Voltage | _ | 1.65-3.6 | 1.65-3.6 | _ | _ | 1/3*VCCB | V | | V_{IHA} | A port Input HIGH Voltage | _ | 1.65-3.6 | 1.65-3.6 | 2/3*VCCA | _ | _ | V | | V _{ILA} | A port Input LOW Voltage | _ | 1.65-3.6 | 1.65-3.6 | _ | _ | 1/3*VCCA | V | | V _{IH} | Control Pin Input HIGH
Voltage | _ | 1.65-3.6 | 1.65-3.6 | 2/3*VCCA | _ | _ | V | | V_{IL} | Control Pin Input LOW
Voltage | _ | 1.65-3.6 | 1.65-3.6 | _ | _ | 1/3*VCCA | V | | V _{OHB} | B port Output HIGH
Voltage | B port source current
= 20µA | 1.65-3.6 | 1.65-3.6 | 0.9*VCCB | _ | _ | V | | V _{OLB} | B port Output LOW
Voltage | B port sink current = 20µA | 1.65-3.6 | 1.65-3.6 | _ | _ | 0.2 | V | | V _{OHA} | A port Output HIGH
Voltage | A port source current=
20µA | 1.65-3.6 | 1.65-3.6 | 0.9*VCCA | _ | _ | V | | V _{OLA} | A port Output LOW
Voltage | A port sink current = 20µA | 1.65-3.6 | 1.65-3.6 | _ | _ | 0.2 | V | | I_{QVB} | VCCB Supply Current | EN = VCCA,I _O = 0A, | 1.65-3.6 | 1.65-3.6 | _ | 0.1 | 6 | μA | | I _{QVA} | VCCA Supply Current | (I/O_B= 0V or VCCB,
I/O_A= float) or
(I/O_B = float, I/O_A
= 0V or V _{CCA}) | 1.65-3.6 | 1.65-3.6 | _ | 0.2 | 30 | μА | | I _{TS-B} | B port Tristate Output
Mode Supply Current | EN=0V
(I/O_B = 0V or VCCB, | 1.65-3.6 | 1.65-3.6 | _ | 0.1 | 6 | μΑ | | I _{TS-A} | A port Tristate Output
Mode Supply Current | I/O_A = float) or
(I/O_B = float, I/O_A
= 0V or V _{CCA}) | 1.65-3.6 | 1.65-3.6 | _ | 0.2 | 30 | μA | | I _{OZ} | I/O Tristate Output Mode
Leakage Current | EN= 0V | 1.65-3.6 | 1.65-3.6 | _ | _ | ±6 | μΑ | | lı | Control Pin Input Current | _ | 1.65-3.6 | 1.65-3.6 | _ | _ | ±1 | μA | | | Davies Off Landiana | I/O D = 0 t= 0 0 / | 0 | 0 | _ | | 15 | | | loff | Power Off Leakage
Current | I/O_B = 0 to 3.6V,
I/O A = 0 to 3.6V | 1.65-3.6 | 0 | _ | _ | 30 | μΑ | | | - | | 0 | 1.65-3.6 | _ | _ | 15 | | ## **AC Electrical characteristics** | Oursels al | Donomorton | Took Constitions | V 00 | V 00 | -40 | °C to +1 | 25°C | l les!# | | |--------------------|-------------------------|--|----------------------|----------------------|------|----------|------|---------|--| | Symbol | Parameter | Test Conditions | V _{CCB} (V) | V _{CCA} (V) | Min. | Тур. | Max. | Unit | | | t_{RB} | B port Rise Time | С _{ЮВ} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 1 | 4 | ns | | | t_{FB} | B port Fall Time | C _{IOB} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 0.8 | 3 | ns | | | t_RA | A port Rise Time | C _{IOA} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 1 | 4 | ns | | | t _{FA} | A port Fall Time | C _{IOA} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 0.8 | 3 | ns | | | | | С _{ЮВ} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 3 | 10 | | | | 1 | Propagation Delay | C _{IOB} = 30 pF | 1.65-3.6 | 1.65-3.6 | _ | 5 | 15 | ns | | | t _{PD_AB} | (Driving B port) | C _{IOB} = 50 pF | 1.65-3.6 | 1.65-3.6 | _ | 8 | 18 | 113 | | | | | C _{IOB} = 100 pF | 1.65-3.6 | 1.65-3.6 | _ | 12 | 20 | | | | | | C _{IOA} = 15 pF | 1.65-3.6 | 1.65-3.6 | _ | 3 | 10 | | | | 1 | Propagation Delay | C _{IOA} = 30 pF | 1.65-3.6 | 1.65-3.6 | _ | 5 | 15 | ns | | | t _{PD_BA} | (Driving A port) | C _{IOA} = 50 pF | 1.65-3.6 | 1.65-3.6 | _ | 8 | 18 | 113 | | | | | C _{IOA} = 100 pF | 1.65-3.6 | 1.65-3.6 | _ | 12 | 20 | | | | t _{SK} | Channel-to-Channel Skew | C _{IOB} = 15pF,
C _{IOA} = 15pF | 1.65-3.6 | 1.65-3.6 | _ | - | 0.15 | ns | | | tрzнв | B port Output Enable | C _{IOB} = 15pF,
I/O_A = V _{CCA} | 1.65-3.6 | 1.65-3.6 | _ | 120 | 250 | ns | | | t _{PZLB} | Time | C _{IOB} = 15pF,
I/O_A = 0V | 1.65-3.6 | 1.65-3.6 | _ | 80 | 200 | | | | t _{PZHA} | A port Output Enable | C _{IOA} = 15pF,
I/O_B = V _{CCB} | 1.65-3.6 | 1.65-3.6 | _ | 120 | 250 | ns | | | t _{PZLA} | Time | C _{IOA} = 15 pF,
I/O_B = 0 V | 1.65-3.6 | 1.65-3.6 | _ | 50 | 200 | | | | t _{PHZB} | B port Output Disable | $C_{IOB} = 15pF,$ $I/O_A = V_{CCA}$ | 1.65-3.6 | 1.65-3.6 | _ | 200 | 400 | ns | | | t _{PLZB} | Time | C _{IOB} = 15pF,
I/O_A = 0V | 1.65-3.6 | 1.65-3.6 | _ | 60 | 175 | | | | t _{PHZA} | A port Output Disable | C _{IOB} = 15pF,
I/O_A = V _{CCA} | 1.65-3.6 | 1.65-3.6 | _ | 180 | 400 | ns | | | t _{PLZA} | Time | C _{IOB} = 15pF,
I/O_A = 0V | 1.65-3.6 | 1.65-3.6 | _ | 50 | 175 | | | | | | C _{IO} = 15pF | 1.65-3.6 | 1.65-3.6 | 140 | _ | _ | Mhn | | | | Maximum Data Rate | C _{IO} = 30pF | 1.65-3.6 | 1.65-3.6 | 120 | _ | _ | Mbps | | | Midr | iviaximum Data Rate | C _{IO} = 50pF | 1.65-3.6 | 1.65-3.6 | 100 | _ | _ | Mhns | | | | | C _{IO} = 100pF | 1.65-3.6 | 1.65-3.6 | 60 | _ | _ | Mbps | | ### **Test Circuits** Figure 2 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement | TEST | S1 | |-------------|----------| | tPZL / tPLZ | 2 × VCCO | | tPHZ / Tpzh | Open | Figure 3 Load Circuit for Enable-Time and Disable-Time Measurement #### Notes: - 1. CL includes probe and jig capacitance. - 2. ten is the same as tPZL and tPZH. tdis is the same as tPLZ and tPHZ. - 3. Vccı is the supply voltage associated with the input. - 4. Vcco is the supply voltage associated with the input. ### **Voltage Waveforms** The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by generators that have the following characteristics: - PRR ≤10 MHz - $Z_{\Omega} = 50 \Omega$ - dv/dt ≥1 V/ns **Figure 4 Pulse Duration** **Figure 5 Propagation Delay Times** - $\hbox{A. Waveform 1 is for an output with internal such that the output is high, except when OE is high.}\\$ - B. Waveform 2 is for an output with conditions such that the output is low, except when OE is high. Figure 6 Enable and Disable Times ### **Functional Description** The RS7LS304Q is a 4-bit configurable dual-supply autosensing bidirectional level translator that does not require a direction control pin. The B and A ports are designed to track two different power supply rails, VCCB and VCCA respectively. The RS7LS304Q offers the feature that the values of the VCCB and V_{CCA} supplies are independent. Design flexibility is maximized because VCCA can be set to a value either greater than or less than the VCCB supply. The RS7LS304Q has high output current capability, which allows the translator to drive high capacitive loads such as most high frequency EMI filters. Another feature of the RS7LS304Q is that each An and Bn channel can function as either an input or an output. An Output Enable (EN) input is available to reduce the power consumption. The EN pin can be used to disable both I/O ports by putting them in 3-state which significantly reduces the supply current. ### **Application Information** #### **Level Translator Architecture** The RS7LS304Q auto-sense translator provides bi-directional logic voltage level shifting to transfer data in multiple supply voltage systems. These level translators have two supply voltages, V_{CCA} and V_{CCB}, which set the logic levels on the input and output sides of the translator. When used to transfer data from the I/O V_{CCA} to the I/O V_{CCB} ports, input signals referenced to the V_{CCA} supply are translated to output signals with a logic level matched to VCCB. In a similar manner, the I/O V_{CCB} to I/O V_{CCA} translation shifts input signals with a logic level compatible to V_{CCB} to an output signal matched to V_{CCA}. The RS7LS304Q translator consists of bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. One-shot circuits are used to detect the rising or falling input signals. In addition, the one-shots decrease the rise and fall times of the output signal for high-to-low and low-to- high transitions. #### **Input Driver Requirements** Auto-sense translators such as the RS7LS304Q have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent in the opposite direction. For proper operation, the input driver to the auto-sense translator should be capable of driving 3mA of peak output current. The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage. ### **Enable Input (EN)** The RS7LS304Q translator has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O VCCB and I/O V_{CCA} pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_{CCA} supply and has Over-Voltage Tolerant (OVT) protection. #### **Uni-Directional versus Bi-Directional Translation** The RS7LS304Q translator can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB. ### **Power Supply Guidelines** The values of the V_{CCA} and V_{CCB} supplies can be set to anywhere in range 1.65-3.6V. Design flexibility is maximized because V_{CCA} may be either greater than or less than the V_{CCB} supply. In contrast, the majority of the competitive auto sense translators has a restriction that the value of the V_{CCA} supply must be equal to less than $(V_{\text{CCB}} - 0.4)$ V. The sequencing of the power supplies will not damage the device during power-up operation. In addition, the I/O V_{CCB} and I/O V_{CCA} pins are in the high impedance state if either supply voltage is equal to 0V. For optimal performance, 0.01 to 0.1 μ F decoupling capacitors should be used on the V_{CCA} and V_{CCB} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces. The RS7LS304Q translators have a power down feature that provides design flexibility. The output ports are disabled when either power supply is off (V_{CCA} or $V_{CCB} = 0V$). This feature causes all of the I/O pins to be in the power saving high impedance state. Figure 7. Typical Application #### Notice for typical application circuits: - 1. Capacitance of C1 and C2 should be 0.1uF or more. - 2. Pull-up resistors are not required on both sides for Logic //O - 3. The RS7LS304Q should not be used in applications such as I2C or 1-Wire. - 4. The output ports are disabled when either power supply is off (Vcca or VccB = 0 V). This feature causes all of the I/O pins to be in the power saving high impedance state. ## **Package Information** ### TSSOP-14L 140Mb/s Bi-directional Level Translator for Push-Pull Applications # **Revision History** | Revision | Description | DATE | |----------|---------------------------------|------------| | 1.0 | Initial Release | 2024/12/25 | | 1.1 | Update application diagram | 2025/07/07 | | 1.2 | Update applications description | 2025/09/01 |