

Features

- No Direction-Control
- Max Data Rates
 24Mbps (Push-Pull, 12MHz)
 2Mbps (Open-Drain, 1MHz)
- 1.2V to 3.63V on A ports and 1.2V to 3.63V on B Ports
- VCCA can be Less than, Greater than or Equal to VCCB
- VCC Isolation: If Either VCC is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: VCCA or VCCB can be Ramped First
- ESD protection exceeds 4000V HBM
- Extended Temperature: -40°C to +125°C

Applications

- I2C/SMBus, MDIO, SPI Interface
- Low-Voltage ASIC Level Translation
- Cell phone, Tablet, PC
- Server, Telecommunication

Block Diagram

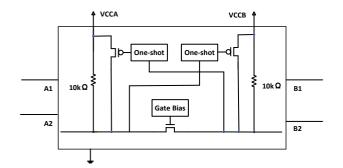


Figure 1: Block Diagram

Description

The RS7LS102 is a 2-bit configurable dual supply bidirectional auto sensing translator that does not require a directional control pin. The A and B ports are designed to track two different power supply rails, VCCA and VCCB respectively.

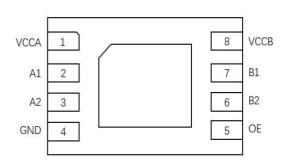
A port supporting operating voltages from 1.2V to 3.63V while it tracks the VCCA supply, and the B ports supporting operating voltages from 1.2V to 3.63V while it tracks the VCCB supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.2V,1.8V, 2.5V, and 3.3V voltage nodes.

The translator has integrated 10 k Ω pull-up resistors on the I/O lines. The integrated pull-up resistors are used to pull-up the I/O lines to either VCCA or VCCB. The RS7LS102 is an excellent match for open-drain applications such as the I2C communication bus.

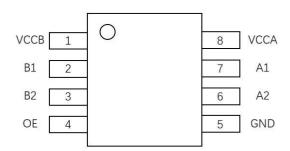
When the output-enable (EN) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, EN should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Information

Ordering Code	Package	Package Description
RS7LS102ZEE	ZE	TDFN-8L, 2.0x3.0 mm
RS7LS102TE	Т	SOT23-8L,2.9X1.6mm


Notes:

E = Pb-free and Green



Pin Configuration

DFN-8(Top view)

SOT23-8(Top view)

Pin Name	Pin No. DFN	Pin No. SOT23	Type Description	
VCCB	8	1	Power	A-port supply voltage. 1.2V ≤ VCCB ≤3.63V
B1	7	2	I/O	Input/output B. Referenced to VCCB.
B2	6	3	I/O	Input/output B. Referenced to VCCB
OE	5	4	Input	Output enables (active High). Pull OE low to place all outputs in 3-state mode.
GND	4	5	GND	Ground.
A2	3	6	I/O	Input/output A. Referenced to VCCA
A1	2	7	I/O	Input/output A. Referenced to VCCA
VCCA	1	8	Power	B-port supply voltage.1.2V ≤ VCCA ≤3.63V

Absolute Maximum Ratings

Symbol	Parameter	MIN	TYP	MAX	Unit
Tstore	Storage Temperature	-65	-	+150	°C
VCCA	DC Supply Voltage port B	-0.3	-	5.5	V
VCCB	DC Supply Voltage port A	-0.3	-	5.5	V
VIOB	Vi(A) referenced DC Input / Output Voltage	-0.3	-	5.5	V
VIOB	Vi(B) referenced DC Input / Output Voltage	-0.3	-	5.5	V
VEN	Enable Control Pin DC Input Voltage	-0.3	-	5.5	V
Ishort	Short circuit duration (I/O to GND)			50	mA

Notes:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended operation conditions

Symbol	Parameter	MIN	TYP	MAX	Unit
VCCA	VCCA Positive DC Supply Voltage	1.2	-	3.63	V
VCCB	VCCB Positive DC Supply Voltage	1.2	ı	3.63	٧
VEN	Enable Control Pin Voltage	GND	ı	3.63	V
VIO	I/O Pin Voltage	GND	ı	3.63	V
Δt /ΔV	Input transition rise or fall time	-	ı	10	ns/V
TA	Operating Temperature Range	-40	-	+125	°C

DC Electrical Characteristics

Unless otherwise specified, -40°C \leq TA \leq 85°C, 1.2V \leq VCCA \leq 3.63V, 1.2V \leq VCCB \leq 3.63V

Symbol	Parameter	Te	est Conditions ^{*1}	MIN	TYP	MAX	Unit
		2.3V≤VCCA	4 ≤3.63V	VCCA - 0.4			V
VIHA	A port Input HIGH Voltage	1.2V≤VCCA	λ <2.3V	VCCA - 0.2			V
VILA	A port Input LOW Voltage	1.2V≤VCCA	\ ≤3.63V	-	-	0.15	V
		2.3V≤VCCE	3 ≤3.63V	VCCB - 0.4	-	-	V
VIHB	B port Input HIGH Voltage	1.2V≤VCC/	∆ <2.3V	VCCB - 0.2			
VILB	B port Input LOW Voltage	1.2V≤VCCE	3≤3.63V	-	-	0.15	V
VIH(EN)	Control Pin Input HIGH Voltage	1.2V≤VCCA	\≤3.63V	0.65*VCCA	-	-	V
		1.65V≤VCC	CA≤3.63V	-	-	0.35*VCCA	
VIL(EN)	Control Pin Input LOW Voltage	1.2V≤VCC	A<1.65V			0.15	V
VOHA	A port Output HIGH Voltage	A port sour	ce current= -20 μA	0.8* VCCA	-	-	V
VOLA	A port Output LOW Voltage	A port sink	current =1 mA	-	-	0.4	V
VOHB	B port Output HIGH Voltage	B port sour	ce current = -20 μA	0.8*VCCB	-	-	V
VOLB	B port Output LOW Voltage	B port sink	current =1 mA	-	-	0.4	V
		_,,,,,,,	VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V	-	0.2	2.4	μA
ICCA	VCCA Supply Current	EN=High	VCCA= 3.63V, VCCB= 0V	-	-	2	μΑ
			VCCA= 0V, VCCB=3.63V	-	-	1	μΑ
		EN LESS	VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V	-	0.5	10	μA
ICCB	VCCB Supply Current	EN=High	VCCA= 3.63V, VCCB= 0V	-		1	μΑ
			VCCA= 0V, VCCB=3.63V	-		1	μΑ
ICCA+ICCB	Combined supply current	EN=High	VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V			15	μA
ICCZA	Static supply current VCCA	- EN=Low	VCCA=1.2V to 3.63V,			8	μΑ
ICCZB	Static supply current VCCB		VCCB=1.2V to 3.63V			8	μΑ
loz	I/O Tri-state Output Mode Leakage Current	A or B port	VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V			±8	μA
		A port	VCCA=0V, VCCB=1.2V to 3.63V			±8	μA
IOFF	Partial power down current	B port	VCCA=1.2V to 3.63V VCCB=0V			±8	μА
II-EN	Control pin leakage Current	VI = VCCI d	or GND	-	-	±2	μA
R _{PU}	Pull-Up Resistors I/O A and B	-		-	10	-	kΩ
Ci	EN	VCCA= 3.3	V, VCCB= 3.3V	-	-	1	pF
	A port	VCCA= 3.3	V, VCCB= 3.3V	-	-	5	pF
CIO	B port	VCCA= 3.3	V, VCCB= 3.3V	-	-	5	pF

Note:

4

^{1.} All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design. Typical values are for V_{CCB} = +3.3 V, V_{CCA} = +1.8 V and T_A = +25°C.

AC Electrical characteristics

Timing Characteristics (C_{LOAD} = 15pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω , T_A = -40°C to 125°C)

V_{CCA} = 1.2V±0.1V

Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	VCC 1.8V±0.		VC(2.5V±(V _{CC}		Unit
		Test conditions	MIN	MAX	MIN	MAX	MIN	MAX	J.III
	Propagation Delay	Push-pull		12		10		10	ns
tPHL_AB	A → B	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		20		15		15	ns
tPLH_AB	A → B	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		12		10		10	ns
tPHL_BA	B → A	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		20		15		15	ns
tPLH_BA	B → A	Open-drain		50		50		50	ns
tEN	Enable Time	EN to A or B		380		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
		Push-pull		30		30		30	ns
tRA	A port Rise Time	Open-drain		160		120		120	ns
		Push-pull		30		30		30	ns
^t RB	B port Rise Time	Open-drain		160		160		160	ns
		Push-pull		20		20		25	ns
tFA	A port Fall Time	Open-drain		30		30		30	ns
		Push-pull		20		20		25	ns
tFB	B port Fall Time	Open-drain		30		30		30	ns
tSKEW	Channel to Chann	el Skew		1		1		1	ns
		Push-pull	20		20		20		Mbps
MDR	Maximum Data Rate	Open-drain	2		2		2		Mbps

 V_{CCA} = 1.8V±0.15V Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	VCCE 1.2V±0.		VCCE 2.5V±0.2		V _{CCE} 3.3V±0.3		Unit
			MIN	MAX	MIN	MAX	MIN	MAX	
tPHL_AB	Propagation Delay	Push-pull		12		10		9	ns
TETIL_AD	$A \rightarrow B$	Open-drain		30		30		30	ns
tPLH AB	Propagation Delay	Push-pull		20		12		11	ns
IPLH_AD	$A \rightarrow B$	Open-drain		30		30		30	ns
+DIII DA	Propagation Delay	Push-pull		12		9		9	ns
tPHL_BA	B → A	Open-drain		30		30		30	ns
+DLLL DA	Propagation Delay	Push-pull		20		14		12	ns
tPLH_BA	$B \rightarrow A$	Open-drain		50		50		50	ns
tEN	Enable Time	EN to A or B		200		200		200	ns
tDIS	Disable Time	EN to A or B		200		200		200	ns
+D.A	A port Rise Time	Push-pull		30		30		30	ns
tRA	A port Rise Time	Open-drain		160		120		120	ns
t	D nort Dice Time	Push-pull		30		30		30	ns
^t RB	B port Rise Time	Open-drain		160		160		160	ns
+ Γ Λ	A part Fall Time	Push-pull		20		20		25	ns
tFA	A port Fall Time	Open-drain		30		30		30	ns
ten	B port Fall Time	Push-pull		20		25		30	ns
t _{FB}	B port Fall Tillle	Open-drain		30		30		30	ns
tSKEW	Channel to Chan	nel Skew		1		1		1	ns
MDR	Maximum Data Rate	Push-pull	20		20		24		Mbps
INIDIK	iviaximum Data Rate	Open-drain	2		2		2		Mbps

V_{CCA} = 2.5 $V\pm0.2V$

Over recommended operating free-air temperature range (unless otherwise noted)

Cumbal	Downworton	Test Conditions	VCC 1.2V±0		VCC 1.8V±0.		V _{CC}		Unit
Symbol	Parameter	rest Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Unit
	Propagation Delay	Push-pull		10		9		9	ns
tPHL_AB	A → B	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		15		12		10	ns
tPLH_AB	A → B	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		10		10		9	ns
tPHL_BA	B → A	Open-drain		30		30		30	ns
	Propagation Delay	Push-pull		15		12		12	ns
tPLH_BA	B → A	Open-drain		50		50		50	ns
tEN	Enable Time	EN to A or B		200		200		200	ns
tDIS	Disable Time	EN to A or B		200		200		200	ns
		Push-pull		30		30		30	ns
tRA	A port Rise Time	Open-drain		160		120		120	ns
		Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
		Push-pull		20		25		30	ns
tFA	A port Fall Time	Open-drain		30		30		30	ns
		Push-pull		20		20		25	ns
^t FB	B port Fall Time	Open-drain		30		30		30	ns
tSKEW	Channel to Chan	nel Skew		1		1		1	ns
		Push-pull	20		20		24		Mbps
MDR	Maximum Data Rate	Open-drain	2		2		2		Mbps

7

V_{CCA} = 3.3V±0.3V

Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test Conditions	VCC 1.2V±0		VCC 1.8V±0.		V _{CC} 2.5V±0		Unit
			MIN	MAX	MIN	MAX	MIN	MAX	
tPHL AB	Propagation Delay	Push-pull		10		9		9	ns
TETIL_AD	$A \rightarrow B$	Open-drain		30		30		30	ns
+DLLL AD	Propagation Delay	Push-pull		15		12		12	ns
tPLH_AB	$A \rightarrow B$	Open-drain		30		30		30	ns
+D. II . D.A	Propagation Delay	Push-pull		10		9		9	ns
tPHL_BA	$B \rightarrow A$	Open-drain		30		30		30	ns
+D1.11.DA	Propagation Delay	Push-pull		15		11		10	ns
tPLH_BA	B → A	Open-drain		50		50		50	ns
tEN	Enable Time	EN to A or B		200		200		200	ns
tDIS	Disable Time	EN to A or B		200		200		200	ns
tRA	A part Diag Time	Push-pull		30		30		30	ns
IRA	A port Rise Time	Open-drain		160		120		120	ns
too	P port Pigo Timo	Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
tFA	A nort Call Time	Push-pull		25		25		25	ns
IFA	A port Fall Time	Open-drain		30		30		30	ns
+	D nort Fall Time	Push-pull		25		25		25	ns
t _{FB}	B port Fall Time	Open-drain		30		30		30	ns
tSKEW	Channel to Chan	nel Skew		1		1		1	ns
MDR	Maximum Data Rate	Push-pull	20		24		24		Mbps
MUK	waximum Data Rate	Open-drain	2		2		2		Mbps

Test Circuits

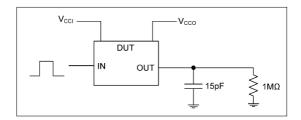


Figure 2 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement

Using a Push-Pull Driver

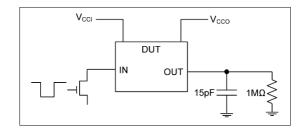
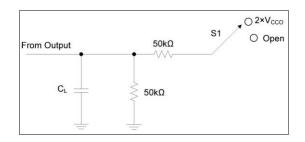



Figure 3 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement

Using an Open-Drain Driver

TEST	S1
t _{PZL} ,t _{PLZ} (t _{dis})	2 × V _{CCO}
t _{PHZ} ,t _{PZH} (t _{en})	Open

Figure 4 Load Circuit for Enable-Time and Disable-Time Measurement

Notes:

- 1. CL includes probe and jig capacitance.
- 2. t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- 3. V_{CCI} is the supply voltage associated with the input.
- 4. V_{CCO} is the supply voltage associated with the output.

Voltage Waveforms

The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by generators that have the following characteristics:

PRR \leq 10 MHz Z_O = 50 Ω dv/dt \geq 1 V/ns

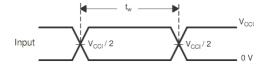
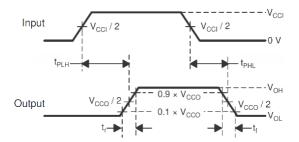
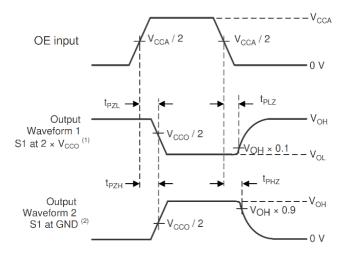
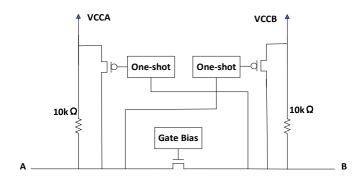



Figure 5 Pulse Duration

Figure 6 Propagation Delay Times




Figure 7 Enable and Disable Times

- 1. Waveform 1 is for an output with internal such that the output is high, except when OE is high.
- 2. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.

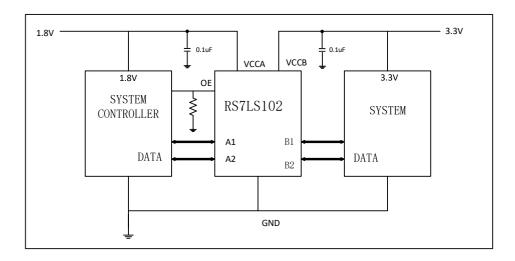
Functional Description

The RS7LS102 is a 4-bit configurable dual-supply bidirectional auto sensing translator that does not require a directional control pin. The A and B ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively.

Figure 8 Level Shifter Architecture

Each A-port I/O has an internal $10k\Omega$ pull up resistor to VCCA, and each B-port I/O has an internal $10k\Omega$ pull-up resistor to VCCB. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors for a short duration, which speeds up the low-to-high transition.

Input Driver Requirements

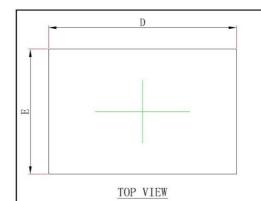

The rise (tR) and fall (tF) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In -addition, the propagation times (tPD), skew (tSKEW) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than $50 \text{ k}\Omega$.

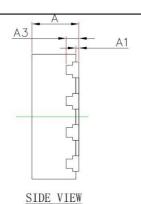
Enable Input (OE)

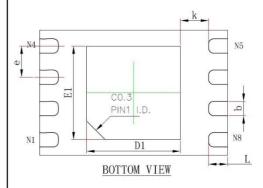
The RS7LS102 has an Enable pin (OE) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O VCCB and I/O VCCA pins to a high impedance state. Normal translation operation occurs when the OE pin is equal to a logic high signal. The OE pin is referenced to the VCCA supply and has overvoltage tolerant protection.

Application Information

Figure 10 Application Circuit


Power Supply Guidelines


During normal operation, supply voltage VCCA can be greater than, less than or equal to VCCB. The sequencing of the power supplies will not damage the device during the power up operation. For optimal performance, $0.01\mu F$ to $0.1\mu F$ decoupling capacitors should be used on the VCCA and VCCB power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

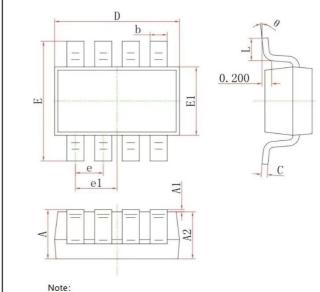


Package Information

TDFN-8L

Cumbal	Dimensions Ir	Millineters
Symbol	Min	Max
Α	0.700	0.800
A1	0.000	0.050
A3	0.203F	REF.
D	2.900	3.100
E	1.900	2.100
D1	1.400	1.600
E1	1.400	1.600
b	0.180	0.280
е	0.500B	SC.
k	0.450F	REF.
L	0.250	0.350

Note: 1.All dimensions are in mm. 2.Dimensions exclude burrs, mold flash or protrusions. 3.Refer Jedec MO-220



TDFN 2X3-8L(ZE08) POD Rev.0

Raystar Microelectronics Technology Inc.

SOT23-8L

Symbol	Dimensions Ir	Millimeters	Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.650	BSC.	0.026	BSC.
e1	0.975	BSC.	0.038	BBSC.
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

- 1.All dimensions are in mm. Angels in degrees.
- 2.Dimensions exclude burrs, mold flash or protrusions.

3.Refer Jedec MO-178

SOT23-8L POD Rev.0

Raystar Microelectronics Technology Inc.

15

Revision History

	Revision	Description	Date
	1.0	Initial Release	2024/4/28
	1.1	Update Pin Configuration	2025/7/7