

Features

- Operating Frequency: 0MHz~200 MHz
- Low noise: <50fs rms
- Iow skew: < 50ps</p>
- Fast rise/fall time: 1.0ns typ.
- Propagation delay: 2.5ns typ.
- Industrial temperature (-40°C to 85°C)
- 3.3V/2.5V/1.8V power supply
- Packaging (Pb-free & Green available)

Applications

Block Diagram

- 33 MHz PCI-to- 133 MHz PCIX controllers
- 80 MHz for 10/100 Mbps Ethernet
- 125 MHz for Gigabit networking
- 155.520 MHz for Optical OC3/SDH/SONET

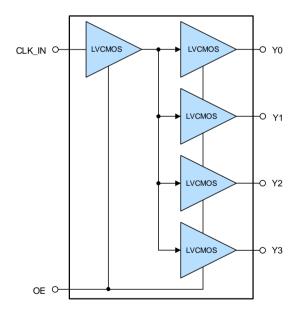
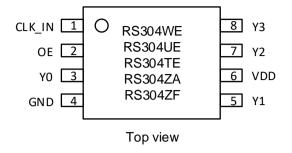


Figure 1 Block Diagram

Description

Raystar's RS304 are low-skew, low- noise, high speed clock buffers and are ideal for computing, networking, and communication applications. Application examples include PCI(X) clock buffers in servers and workstations, PCI(X) Storage Area Network (SAN), and RAID controllers. They are used for networking and communications applications requiring 80 MHz for 10/100 Mbps Ethernet and 125 MHz for Gigabit networking clocks. To reduce EMI emission and power consumption, all outputs can be disabled to Low-state by asserting a low signal to the OE (Output Enable) pin. RS304 output impedance is 50 ohms.

Order Information


Part Number	Package	Description
RS304WE	8-Pin SOIC	4.9mmx6mm
RS304UE	8-Pin MSOP	3.2mmx5.15mm
RS304TE	8-Pin TSSOP	3mmx6.4mm
RS304ZAE	8-Pin DFN8	2mmx2mm
RS304ZFE	8-Pin DFN8	1.5mmx1.5mm

Notes

[1] E = Pb-free and Green

Pin Configuration

INP	OUTPUT	
CLK_IN	OE	Y[0:3]
Х	L	L
L	н	L
Н	Н	Н

Pin Description

Pin name	Pin No.	Туре	Description
CLK_IN	1	Input	clock input
OE	2	Input	Active High Output Enable. Y[0:3] outputs will be Low Level when OE is low
Y[0:3]	3,5,7,8	Output	LVCMOS level outputs
GND	4	Ground	Ground
VDD	6	Power	3.3V/2.5V/1.8V Power Supply

Absolute Maximum Ratings

Parameter	Range
Supply Voltage (VDD)	-0.0V to +6.5V
Input Voltage	-0.5V to VDD+0.5V
Industrial Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C
Junction Temperature	150°C
Input ESD MIL- 883, method 3015, human body model	2KV

Recommended Operating Conditions

Symbol	Parameter	MIN	MAX	Unit
VDD	I/O Supply, Analog Core Supply	1.71	3.63	V
ТА	Industrial Ambient Temperature	-40	+85	° C

DC Electrical Characteristics

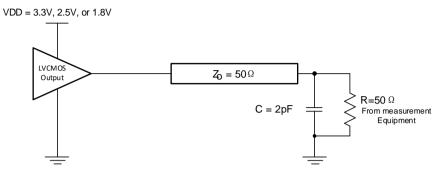
 $(TA = -40 \sim 85^{\circ}C, VCC = 3.3V \pm 10\%, 2.5V \pm 10\%, 1.8V \pm 5\%)$

Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit
VIL	Low Input Voltage				0.8	V
Vін	High Input Voltage		0.6*VDD			v
IIL	Low Input Current	VIN = 0V			-5	
Ін	High Input Current	VIN = VDD			5	μA
Vol	Low Output Voltage	$I_{OL} = 12mA$			0.25*VDD	
Vон	High Output Voltage	I _{OH} = — 12mA	0.7*VDD			V
Co	Output Capacitance			3	7	~ Г
Cı	Input Capacitance			3	5	pF
		CL = 15pF/100MHz VDD=3.3V		32		
IDD	Supply Current	CL = 15pF/100MHz VDD=2.5V		26		mA
		CL = 15pF/100MHz VDD=1.8V		20		
Zo	Output Impedance			50		Ω
L	Pin Inductance				7	nH

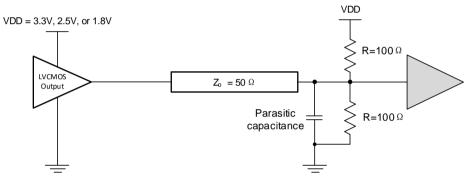
AC Characteristics

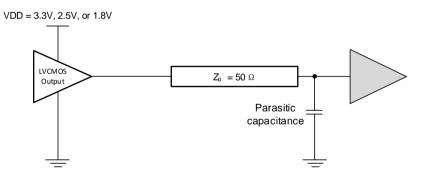
(TA = -40~85°C, VCC = 3.3V ±10%, 2.5V ±10%, 1.8V ±5%, 15pF/100MHz)

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
Fin	Input frequency		0		200	MHz
		CLK_IN to Y[0-3] rising edges @ 1.5V	1.0	1.7	3.0	
T _{PLH}	Low-to-high propagation delay	CLK_IN to Y[0-3] rising edges @ 1.25V	1.0	2.0	3.2	
		CLK_IN to Y[0-3] rising edges @ 0.9V	1.0	2.5	3.5	
		CLK_IN to Y[0-3] falling edges @ 1.5V	1.0	1.7	3.0	ns
T _{PHL}	High-to-low propagation delay	CLK_IN to Y[0-3] falling edges @ 1.25V	1.0	2.0	3.2	
		CLK_IN to Y[0-3] falling edges @ 0.9V	1.0	2.5	3.5	
Тѕк(о)	Output skew	@ VDD/2			150	
T _{SK(P)}	Pulse skew	@ VDD/2			300	
Tsk(t)	Package skew(1)	@ VDD/2			500	ps
		20%~80% VDD=3.3V		0.7	1.4	
T _R ,T _F	Rise, Fall time	20%~80% VDD=2.5V		1	2	
		20%~80% VDD=1.8V		1.5	3	ns
T_{PZL},T_{PZH}	Output enable time				5	
T_{PLZ}, T_{PHZ}	Output disable time				10	
T _{DC}	Output duty cycle	tDC = tH/tC Y, tH = High Pulse Width	45		55	%


Note:

1. Identical traces, loads, power supply.

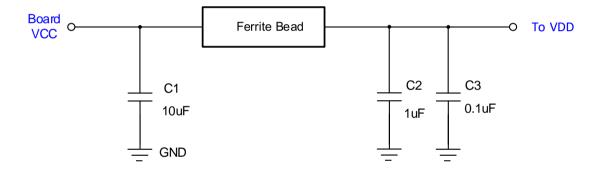

2. Maximum Output Skew is 100ps when frequency is below 125MHz with 10pF loading.


Parameter Measurement Information

Test Load Circuit

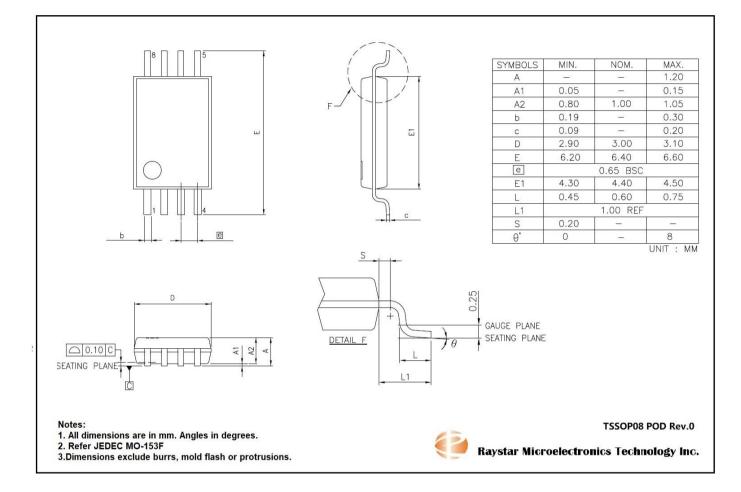
Application Load With 50-Ω Termination

Application Load With Termination


Rise and Fall Time

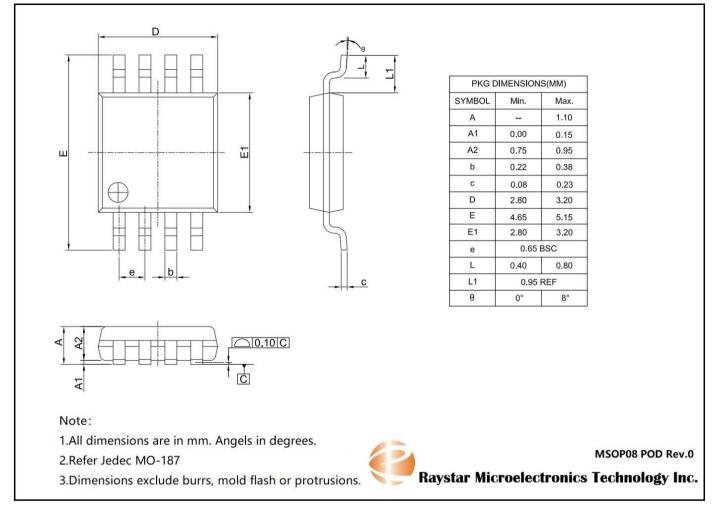
Power Supply Recommendations

High-performance clock buffers can be sensitive to noise on the power supply, which may dramatically increase the additive jitter of the buffer. Thus, it is essential to manage any excessive noise from the system power supply, especially for applications where the jitter and phase noise performance is critical.

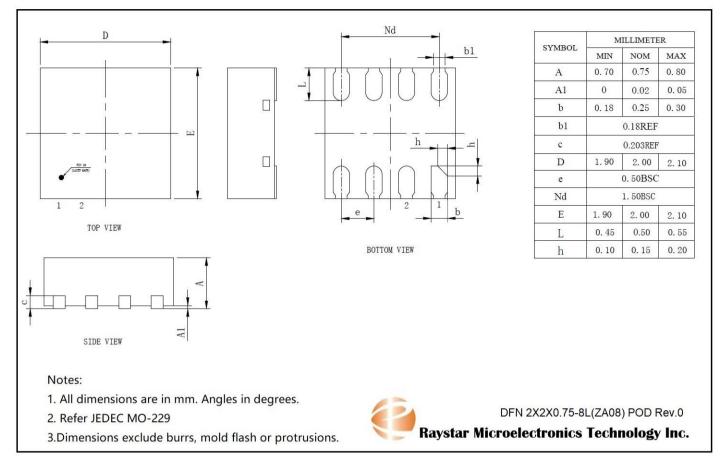

Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the very low impedance path for high-frequency noise and guard the power supply system against induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and should have low equivalent series resistance (ESR). To properly bypass the supply, the decoupling capacitors must be placed very close to the power-supply terminals, be connected directly to the ground plane, and laid out with short loops to minimize inductance. TI recommends adding as many high- frequency (for example, 0.1 μ F) bypass capacitors, as there are supply terminals in the package. TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock buffer; these beads prevent the switching noise from leaking into the board supply. It is imperative to choose an appropriate ferrite bead with very low DC resistance to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply terminals that is greater than the minimum voltage required for proper operation.


Package Information

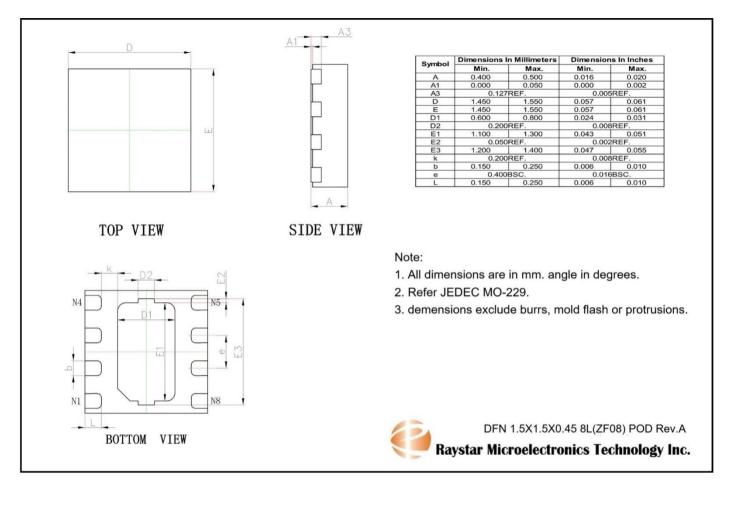
8-Pin TSSOP (T)



8-Pin SOIC (W)



8-Pin MSOP (U)



8-Pin DFN8 (ZA)

8-Pin DFN8 (ZF)

Revision History

Revision	Description	Date
V1.4	 Add ordering code RS304ZAE of DFN8 package Applcate formatted document Change TSSOP8,SOP8,MSOP8 package figure 	2023/6/16
V1.5	 Modify VIH (MAX) =0.8V. Delete the typical value. Modify IIL test condition. 	2024/4/11
V1.6	 Add 1.8V and 2.5V Data Modify Test Load information and Order table. ADD Power Supply Recommendations 	2025/1/14
V1.7	 Modify the output Impedance Zo=50Ω. Add DFN8-1.5mmx1.5mm(ZF) package. 	2025/2/26
V1.8	1. Update VOH VOL Data	2025/5/26