

## **Features**

- PCIe Gen5 additive phase jitter: 12fs RMS
- PCIe Gen6 additive phase jitter: 5fs RMS
- DB2000QL additive phase jitter: 15fs RMS
- 12kHz to 20MHz additive phase jitter: 33fs RMS at 156.25MHz
- Power Down Tolerant (PDT) inputs
- Flexible Startup Sequencing (FSS)
- Automatic Clock Parking (ACP) upon loss of CLKIN
- Selectable output slew rate via pin or SMBus
- 4-wire Side-Band Interface supports high-speed
- serial output enable and device daisy-chaining
- 9 selectable SMBus addresses
- SMBus write protection features
- Spread-spectrum tolerant
- $85\Omega$  or  $100\Omega$  (-100 suffix) output impedance
- CLKIN accepts HCSL or LVDS signal levels
- -40 to +105°C, 3.3V ±10% 1.8V ±5% operation

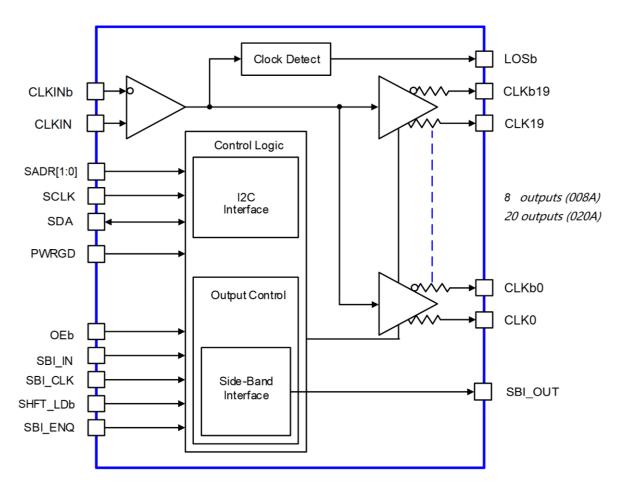
## **Applications**

- Cloud/High-performance Computing
- NVMe Storage
- Networking
- Accelerators

## Description

The RS2CB19008A ultra-high performance series fanout buffers support PCIe Gen5 and Gen6. They provide a Loss-Of-Signal (LOS) output for system monitoring and redundancy. The devices also incorporate Power Down Tolerant (PDT) and Flexible Startup Sequencing (FSS) features, easing system design. They can drive both source-terminated and double terminated loads, operating up to 400MHz.

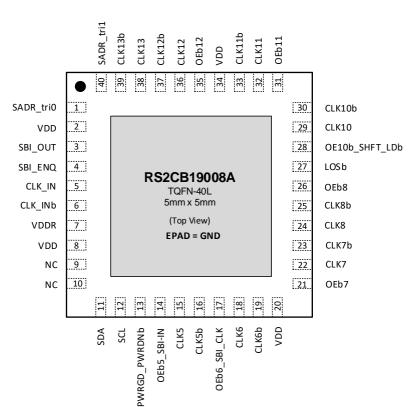
The RS2CB19008A devices offer higher output counts in smaller packages compared to earlier buffer families. The buffers support both Common Clock (CC) and Independent Reference (IR) PCIe clock architectures.




# **Ordering Information**

| Part Number         | Number of<br>Outputs | Differential<br>Output<br>Impedance (Ω) | Package  | Operation<br>Temperature |
|---------------------|----------------------|-----------------------------------------|----------|--------------------------|
| RS2CB19008AZLAE     | 8                    | 85                                      | TQFN-40L | -40 to +105°C            |
| RS2CB19008A-100ZLAE | 8                    | 100                                     |          | -40 10 +103 C            |




## 1.1 RS2CB19008A Block Diagram



#### Figure 1. RS2CB19008A/020A Block Diagram



## 1.2 RS2CB19008A Pin Assignments





#### Table 1. RS2CB19008A Pin Descriptions

| Pin<br>Number | Pin Name     | Туре           | Description                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | SADR_tri0    | I, SE, PD, PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables.                                                                                                                                                                                             |
| 2             | VDD          | PWR            | Clock power supply.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3             | SBI_OUT      | I, SE, PD      | Tthe SBI shift register data output. The function is this pin is controlled by the SBI_ENQ. For more information, see Side-Band Interface (SBI).                                                                                                                                                                                                                                                                                |
| 4             | SBI_ENQ      | I, SE, PD, PDT | Input that selects function of pins that are multiplexed between<br>OE and SBI functionality. SMBus output enable bits and non-<br>multiplexed OE pins remain functional when SBI is enabled.<br>This pin must be strapped to its desired state. It cannot<br>dynamically change.<br>0 = SBI is disabled. Multiplexed pins function as output enables.<br>1 = SBI is enabled. Multiplexed pins function as SBI control<br>pins. |
| 5             | CLKIN        | I, DIF         | True clock input.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6             | CLKINb       | I, DIF         | Complementary clock input.                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7             | VDDR         | PWR            | Power supply for clock input (receiver).                                                                                                                                                                                                                                                                                                                                                                                        |
| 8             | VDD          | PWR            | Clock power supply.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9             | NC           | PWR            | Not connect                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10            | NC           | PWR            | Not connect                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11            | SDA          | I/O, SE, OD    | Data pin for SMBus interface.                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12            | SCL          | I, SE          | Clock pin of SMBus interface.                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13            | PWRGD_PWRDNb | I, SE, PU, PDT | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode.                                                                                                                                                                                                                                                               |
| 14            | OEb5_SBI_IN  | I, SE, PD, PDT | Active low input for enabling output 5 or the clock pin for the<br>SBI shift register. The function is this pin is controlled by the<br>SBI_ENQ pin. For more information, see Side-Band Interface<br>(SBI).<br>OE mode:<br>0 = Enable output, 1 = Disable output. Side-Band mode:<br>Clocks data into the SBI on the rising edge.                                                                                              |
| 15            | CLK5         | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16            | CLK5b        | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17            | OEb6_SBI_CLK | I, SE, PD, PDT | Active low input for enabling output 5 or the clock pin for the<br>SBI shift register. The function is this pin is controlled by the<br>SBI_ENQ pin. For more information, see Side-Band Interface<br>(SBI).<br>OE mode:<br>0 = Enable output, 1 = Disable output. Side-Band mode:<br>Clocks data into the SBI on the rising edge.                                                                                              |
| 18            | CLK6         | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19            | CLK6b        | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20            | VDD          | PWR            | Clock power supply.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21            | OEb7         | I, SE, PD, PDT | Active low input for enabling output 7. 0 = Enable output, 1 = Disable output.                                                                                                                                                                                                                                                                                                                                                  |



### RS2CB19008A Series Clock Buffer

PCIe Gen5/6 1:8 Fan out Buffer with LOS

| Pin<br>Number | Pin Name       | Туре           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22            | CLK7           | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23            | CLK7b          | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24            | CLK8           | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25            | CLK8b          | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26            | OEb8           | I, SE, PD, PDT | Active low input for enabling output 6. 0 = Enable output, 1 = Disable output.                                                                                                                                                                                                                                                                                                                                                                   |
| 27            | LOSb           | O, OD, PDT     | Output indicating Loss of Input Signal. This pin is an open-drain<br>output and requires an external pull-up resistor for proper<br>functionality. A low output on this pin indicates a loss of signal<br>on the input clock.                                                                                                                                                                                                                    |
| 28            | OEb10_SHFT_LDb | I, SE, PD, PDT | Active low input for enabling output 13 or SHFT_LDb pin for the<br>Side-Band Interface. The function of this pin is controlled by the<br>SBI_ENQ pin. For more information, see Side-Band Interface<br>(SBI).<br>OE mode:<br>0 = Enable output, 1 = Disable output. Side-Band mode:<br>0 = Disable SBI shift register, 1 = Enable SBI shift register.<br>A falling edge transfers SBI shift register contents to SBI output<br>control register. |
| 29            | CLK10          | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30            | CLK10b         | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31            | OEb11          | I, SE, PD, PDT | Active low input for enabling output 11. 0 = Enable output, 1 = Disable output.                                                                                                                                                                                                                                                                                                                                                                  |
| 32            | CLK11          | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33            | CLK11b         | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 34            | VDD            | PWR            | Clock power supply.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35            | OEb12          | I, SE, PD, PDT | Active low input for enabling output 12. 0 = Enable output, 1 = Disable output.                                                                                                                                                                                                                                                                                                                                                                  |
| 36            | CLK12          | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37            | CLK12b         | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 38            | CLK13          | O, DIF         | True clock output.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39            | CLK13b         | O, DIF         | Complementary clock output.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40            | SADR_tri1      | I, SE, PD, PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables.                                                                                                                                                                                                              |
| 41            | EPAD           | GND            | Ground pin.                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# 2. Specifications

# 2.1 Absolute Maximum Ratings

| Symbol           | Parameter                             | Condition                              | MIN  | MAX                    | Unit |
|------------------|---------------------------------------|----------------------------------------|------|------------------------|------|
| V <sub>DDx</sub> | Supply Voltage with respect to Ground | Any VDD pin                            | -0.5 | 3.9                    | V    |
| V <sub>IN</sub>  | Input Voltage                         | [1]                                    | -0.5 | 3.9                    | V    |
| V <sub>IN</sub>  | Input Voltage                         | [2]                                    | -0.5 | V <sub>DDx</sub> + 0.3 | V    |
| I <sub>IN</sub>  | Input Current                         | All SE inputs and CLKIN <sup>[2]</sup> | -    | <u>+</u> 50            | mA   |
|                  |                                       | CLK                                    | -    | 30                     | mA   |
|                  | Output Current – Continuous           | SDATA, SBI_OUT                         | -    | 25                     | mA   |
| I <sub>OUT</sub> |                                       | CLK                                    | -    | 60                     | mA   |
| 001              | Output Current – Surge                | SDATA, SBI_OUT                         | -    | 50                     | mA   |
| TJ               | Maximum Junction Temperature          | -                                      | -    | 150                    | °C   |
| Τ <sub>S</sub>   | Storage Temperature                   | Storage Temperature                    | -65  | 150                    | °C   |

1. Pins designated Power Down Tolerant (PDT) in the pin description tables.

2. Pins not designated Power Down Tolerant (PDT) in the pin description tables.

## 2.2 ESD Ratings

| Symbol | Parameter            | Condition                                 | Rating | Unit |
|--------|----------------------|-------------------------------------------|--------|------|
| ESD    | Human Body Model     | ANSI/ESDA/JEDECJS-001-2023 Classification | 8000   | V    |
| LOD    | Charged Device Model | ANSI/ESDA/TEDECJS-002-2022 Classification | 1000   | V    |

# 2.3 Recommended Operation Conditions

| Symbol           | Parameter                                                                                           | Condition                                                                                      | MIN  | ТҮР | МАХ  | Unit |
|------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|-----|------|------|
| TJ               | Maximum Junction Temperature                                                                        | -                                                                                              | -    | -   | 125  | °C   |
| T <sub>A</sub>   | Ambient Operating Temperature                                                                       | -                                                                                              | -40  | 25  | 105  | ů    |
| V                |                                                                                                     | Any VDD pin, 3.3V ±10% supply.                                                                 | 2.97 | 3.3 | 3.63 | V    |
| V <sub>DDx</sub> | Supply Voltage with respect to Ground                                                               | Any VDD pin, 1.8V ±5% supply.                                                                  | 1.71 | 1.8 | 1.89 | V    |
| t <sub>PU</sub>  | Power-up time for all VDDs to reach<br>minimum specified voltage (power<br>ramps must be monotonic) | Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic). | 0.05 | -   | 5    | ms   |

## 2.4 Thermal Information

| Package <sup>[1]</sup> | Symbol           | Condition                       | Typical Value (°C/W) |
|------------------------|------------------|---------------------------------|----------------------|
|                        | θ <sub>Jc</sub>  | Junction to Case                | 44                   |
|                        | θ <sub>Jb</sub>  | Junction to Base                | 2                    |
| 5 × 5 mm TQFN-40L      | θ <sub>JA0</sub> | Junction to Air, still air      | 33                   |
| (3.4 × 3.4 mm ePad)    | θ <sub>JA1</sub> | Junction to Air, 1 m/s air flow | 29                   |
|                        | θ <sub>JA3</sub> | Junction to Air, 3 m/s air flow | 28                   |
|                        | $\theta_{JA5}$   | Junction to Air, 5 m/s air flow | 27                   |

1. ePad soldered to board.



## 2.5 Electrical Characteristics

### 2.5.1 Phase Jitter

#### Table 2. PCIe Refclk Phase Jitter - Normal Conditions<sup>[1][2][3][8]</sup>

| Symbol                     | Parameter                                      | Condition                     | ТҮР | МАХ   | Specification<br>Limit | Unit     |
|----------------------------|------------------------------------------------|-------------------------------|-----|-------|------------------------|----------|
| t <sub>jphPCleG1-CC</sub>  |                                                | PCle Gen1 (2.5 GT/s)          | 610 | 15000 | 86000 [6]              | fs p-p   |
| +                          |                                                | PCIe Gen2 Hi Band (5.0 GT/s)  | 120 | 310   | 3,100 <sup>[6]</sup>   |          |
| <sup>t</sup> jphPCleG2-CC  | Additive PCIe Phase Jitter                     | PCIe Gen2 Lo Band (5.0 GT/s)  | 10  | 20    | 3,000 [6]              |          |
| t <sub>jphPCleG3-CC</sub>  | (Common Clocked Architecture)                  | PCIe Gen3 (8.0 GT/s)          | 15  | 25    | 1,000 <sup>[6]</sup>   | fs RMS   |
| t <sub>jphPCleG4-CC</sub>  | SSC ≤ -0.5%                                    | PCIe Gen4 (16.0 GT/s) [3] [4] | 15  | 25    | 500 [6]                | IS RIVIO |
| t <sub>jphPCleG5-CC</sub>  |                                                | PCIe Gen5 (32.0 GT/s) [3] [5] | 12  | 25    | 150 [6]                |          |
| t <sub>jphPCleG6-CC</sub>  |                                                | PCIe Gen6 (64.0 GT/s) [3] [5] | 5   | 18    | 100 [6]                |          |
| t <sub>jphPCleG2-IR</sub>  |                                                | PCIe Gen2 (5.0 GT/s)          | 80  | 300   |                        |          |
| t <sub>jphPCle</sub> G3-IR | Additive PCIe Phase Jitter                     | PCIe Gen3 (8.0 GT/s)          | 50  | 150   |                        |          |
| t <sub>jphPCleG4-IR</sub>  | (IR Architectures - SRIS, SRNS)<br>SSC ≤ -0.3% | PCIe Gen4 (16.0 GT/s) [3] [4] | 40  | 100   | [7]                    | fs RMS   |
| t <sub>jphPCleG5-IR</sub>  |                                                | PCIe Gen5 (32.0 GT/s) [3] [5] | 15  | 30    |                        |          |
| t <sub>jphPCleG6-IR</sub>  |                                                | PCIe Gen6 (64.0 GT/s) [3] [5] | 12  | 30    |                        |          |

- 1. The Refclk jitter is measured after applying the filter functions found in the *PCI Express Base Specification 6.0, Revision 1.0.* For the exact measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements.
- 2. Jitter measurements should be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements can be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83.
- 3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.
- 4. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 5. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.
- 7. The PCI Express Base Specification 6.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit.
- 8. Differential input swing  $\geq$  1600mV and input slew rate  $\geq$  3.5V/ns



| Symbol                    | Parameter                       | Condition                    | ТҮР | МАХ | Specification<br>Limit | Unit     |
|---------------------------|---------------------------------|------------------------------|-----|-----|------------------------|----------|
| t <sub>jphPCleG1-CC</sub> |                                 | PCIe Gen1 (2.5 GT/s)         | 692 | 839 | 86,000 <sup>[6]</sup>  | fs p-p   |
|                           |                                 | PCIe Gen2 Hi Band (5.0 GT/s) | 41  | 49  | 3,100 <sup>[6]</sup>   |          |
| t <sub>jphPCleG2-CC</sub> | Additive PCIe Phase Jitter      | PCIe Gen2 Lo Band (5.0 GT/s) | 11  | 14  | 3,000 [6]              | -        |
| t <sub>jphPCleG3-CC</sub> | (Common Clocked Architecture)   | PCIe Gen3 (8.0 GT/s)         | 20  | 24  | 1,000 <sup>[6]</sup>   | fs RMS   |
| t <sub>jphPCleG4-CC</sub> | SSC ≤ -0.5%                     | PCIe Gen4 (16.0 GT/s) [3][4] | 20  | 24  | 500 [6]                | 13 1 100 |
| t <sub>jphPCleG5-CC</sub> |                                 | PCIe Gen5 (32.0 GT/s) [3][5] | 8   | 9.3 | 150 <sup>[6]</sup>     |          |
| t <sub>jphPCleG6-CC</sub> |                                 | PCIe Gen6 (64.0 GT/s) [3][5] | 5   | 6   | 100 [6]                |          |
| t <sub>jphPCleG2-IR</sub> |                                 | PCIe Gen2 (5.0 GT/s)         | 52  | 63  |                        |          |
| t <sub>jphPCleG3-IR</sub> | Additive PCIe Phase Jitter      | PCIe Gen3 (8.0 GT/s)         | 14  | 17  |                        |          |
| t <sub>jphPCleG4-IR</sub> | (IR Architectures - SRIS, SRNS) | PCIe Gen4 (16.0 GT/s) [3][4] | 14  | 17  |                        | fs RMS   |
| t <sub>jphPCleG5-IR</sub> | SSC ≤ -0.3%                     | PCIe Gen5 (32.0 GT/s) [3][5] | 12  | 15  | [7]                    |          |
| t <sub>jphPCleG6-IR</sub> |                                 | PCIe Gen6 (64.0 GT/s) [3][5] | 15  | 19  |                        |          |

#### Table 3. PCIe Refclk Phase Jitter - Degraded Conditions<sup>[1][2][3][8]</sup>

1. The Refclk jitter is measured after applying the filter functions found in the *PCI Express Base Specification 6.0, Revision 1.0.* For the exact measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements.

- 2. Jitter measurements should be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83.
- 3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.
- 4. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 5. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.
- 7. The PCI Express Base Specification 6.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user may choose to use this more relaxed value as the jitter limit.
- 8. Differential input swing = 800mV and input slew rate = 1.5V/ns

| Table 4 | Non-PCle | Refclk | Phase | Jitter | [1][2][3] |
|---------|----------|--------|-------|--------|-----------|
|---------|----------|--------|-------|--------|-----------|

| Symbol      | Parameter                          | Condition                                    | ТҮР | МАХ | Specification<br>Limit | Unit   |
|-------------|------------------------------------|----------------------------------------------|-----|-----|------------------------|--------|
| tjphDB2000Q | Additive Phase Jitter - normal     | 100MHz, Intel-supplied filter [3]            | 10  | 12  | 80 [5]                 |        |
| tjph12k-20M | conditions <sup>[4]</sup>          | 156.25MHz (12kHz to 20MHz)                   | 30  | 36  | N/A                    |        |
| tjphDB2000Q | Additive Phase Jitter -            | 100MHz, Intel-supplied filter <sup>[3]</sup> | 13  | 16  | 80 [5]                 | fs RMS |
| tjph12k-20M | degraded conditions <sup>[6]</sup> | 156.25MHz (12kHz to 20MHz)                   | 39  | 48  | N/A                    |        |

1. See Test Loads for test configuration.

2. SMA100B used as signal source.

3. The RS2CB19008A devices meet all legacy QPI/UPI specifications by meeting the PCIe and DB2000Q specifications listed in this document.

4. Differential input swing = 1,600 mV and input slew rate = 3.5 V/ns.

5. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.

6. Differential input swing = 800mV and input slew rate = 1.5V/ns.



## 2.5.2 Output Frequencies, Startup Time, and LOS Timing

| Table 5. Output Frequencies | . Startup Time | and LOS Timing       |
|-----------------------------|----------------|----------------------|
| Table of Calpart requeitero | , otaitap inno | , ana <b>200</b> mmg |

| Symbol                   | Parameter           | Condition                                                                             | MIN | ТҮР | ΜΑΧ | Unit   |
|--------------------------|---------------------|---------------------------------------------------------------------------------------|-----|-----|-----|--------|
| f                        | Operating Frequency | Automatic Clock Parking (ACP) Circuit disabled                                        | 1   | -   | 400 | MHz    |
| f <sub>OP</sub>          |                     | Automatic Clock Parking (ACP) Circuit enabled                                         | 25  | -   | 400 | IVITIZ |
| t <sub>STARTUP</sub>     | Start-up Time       | [1]                                                                                   | -   | 1.2 | 3   | ms     |
| t <sub>STARTUP</sub>     | Start-up Time       | [2]                                                                                   | -   | 0.3 | 1   | ms     |
| t <sub>LATOEb</sub>      | OEb latency         | OEb assertion/de-assertion CLK<br>start/stop latency. Input clock must be<br>running. | 4   | 5   | 10  | clks   |
| t <sub>LOSAssert</sub>   | LOS Assert Time     | Time from disappearance of input clock to LOS assert. <sup>[3][4]</sup>               | -   | 123 | 200 | ns     |
| t <sub>LOSDeassert</sub> | LOS De-assert Time  | Time from appearance of input clock to LOS de-assert. <sup>[3][5]</sup>               | -   | 6   | 9   | clks   |

1. Measured from when all power supplies have reached > 90% of nominal voltage to the first stable clock edge on the output. PWRGD\_PWRDNb tied to VDD in this case.

2. VDD stable, measured from de-assertion of PWRGD\_PWRDNb.

3. The clock detect circuit does not qualify the accuracy of the input clock. The first input clock must appear to release the power on reset and enable the LOS circuit at power up.

- 4. PWRGD\_PWRDNb high. The Automatic Clock Parking (ACP) circuit if enabled will park the outputs in a low/low state within this time. See Byte4, bit 4 LOSb\_ACP\_ENABLE.
- 5. PWRGD\_PWRDNb high. The device will drive the outputs to a high/low state within this time and then begin clocking the outputs

## 2.5.3 RS2CB19008A CLK AC/DC Output Characteristics

Table 6. RS2CB19008A 85Ω CLK AC/DC Characteristics - Source-Terminated 100MHz PCIe <sup>[1]</sup>

| Symbol              | Parameter                                                                         | Conditions                                                      | MIN  | ТҮР | МАХ  | Specification<br>Limit <sup>[2]</sup> | Unit         |
|---------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-----|------|---------------------------------------|--------------|
| V <sub>MAX</sub>    | Absolute Max Voltage<br>Includes 300mV of<br>Overshoot (Vovs) <sup>[3][4]</sup>   | Across all settings in this                                     | -    | -   | 1092 | 1150                                  |              |
| V <sub>MIN</sub>    | Absolute Min Voltage<br>Includes -300mV of<br>Undershoot (Vuds) <sup>[3][5]</sup> | table at 100MHz.                                                | -166 | -   | -    | -300                                  |              |
| V <sub>HIGH</sub>   | Voltage High [3]                                                                  | V <sub>HIGH</sub> set to 800mV.                                 | 678  | 819 | 994  | -                                     | mV           |
| V <sub>LOW</sub>    | Voltage Low <sup>[3]</sup>                                                        | VHIGH Set to boomv.                                             | -88  | 29  | 146  | -                                     |              |
| V <sub>CROSS</sub>  | Crossing Voltage (abs)<br>[3][6][7]                                               | V <sub>HIGH</sub> set to 800mV,                                 | 278  | 403 | 543  | 250 to 550                            |              |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var)<br>[3][6][8]                                               | scope averaging off.                                            | -    | 1   | 97   | 140                                   |              |
| -1 / -14            |                                                                                   | V <sub>HIGH</sub> set to 800mV, Fast slew rate, scope averaging | 2.0  | 2.8 | 4.0  | 2 to 5                                | ) <i>(/-</i> |
| dv/dt               | Slew Rate <sup>[9][10]</sup>                                                      | V <sub>HIGH</sub> set to 800mV, Slow slew rate, scope averaging | 1.6  | 2.2 | 3.3  | 1.5 to 3.5                            | V/ns         |
| ΔT <sub>R/F</sub>   | Rise/Fall Matching <sup>[3] [11]</sup>                                            | V <sub>HIGH</sub> set to 800mV. Fast<br>slew rate.              | -    | 4   | 19   | 20                                    | %            |



|                    |                                       | V <sub>HIGH</sub> set to 800mV. Slow slew rate.                 | -    | 6    | 24   | N/A        |      |
|--------------------|---------------------------------------|-----------------------------------------------------------------|------|------|------|------------|------|
| V <sub>HIGH</sub>  | Voltage High <sup>[3]</sup>           | V <sub>HIGH</sub> set to 900mV.                                 | 719  | 903  | 1090 | -          |      |
| $V_{LOW}$          | Voltage Low <sup>[3]</sup>            | VHIGH Set to Sooniv.                                            | -115 | 37   | 163  | -          |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup> | V <sub>HIGH</sub> set to 900mV,                                 | 289  | 445  | 582  | 250 to 600 | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) <sup>[3]</sup> | scope averaging off.                                            | -    | 1    | 105  | 140        |      |
|                    | Slew Rate <sup>[9][10]</sup>          | V <sub>HIGH</sub> set to 900mV, Fast slew rate, scope averaging | 2.1  | 2.9  | 4.3  | 2 to 5     |      |
| dv/dt              |                                       | V <sub>HIGH</sub> set to 900mV, Slow slew rate, scope averaging | 1.7  | 2.3  | 3.5  | 1.5 to 3.5 | V/ns |
| A.T.               |                                       | V <sub>HIGH</sub> set to 900mV. Fast slew rate.                 | -    | 5    | 18   | 20         |      |
| ΔT <sub>R/F</sub>  | Rise/Fall Matching <sup>[3][11]</sup> | V <sub>HIGH</sub> set to 900mV. Slow slew rate.                 | -    | 6    | 26   | N/A        | %    |
| t <sub>DC</sub>    | Output Duty Cycle [9]                 | V <sub>T</sub> = 0V differential. 50%<br>duty cycle input.      | 49   | 49.9 | 51   | 45 to 55   | %    |

1. Standard high impedance load with  $C_L = 2pF$ . See Test Loads.

2. The specification limits are taken from either the *PCle Base Specification Revision 6.0* or from relevant x86 processor specifications, whichever is more stringent.

3. Measured from single-ended waveform.

4. Defined as the maximum instantaneous voltage including overshoot.

5. Defined as the minimum instantaneous voltage including undershoot.

6. Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

- 7. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 8. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system.
- 9. Measured from differential waveform.
- 10. Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.
- 11. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

| Table 7. RS2CB19008A 100Ω CLK AC/DC C | haracteristics - Source-Terminated 100MHz PCIe Apps <sup>[1]</sup> |
|---------------------------------------|--------------------------------------------------------------------|
|---------------------------------------|--------------------------------------------------------------------|

| Symbol            | Parameter                                                                         | Condition                                    | MIN  | ТҮР | МАХ  | Specification<br>Limit <sup>[2]</sup> | Unit |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------|------|-----|------|---------------------------------------|------|
| V <sub>MAX</sub>  | Absolute Max Voltage<br>Includes 300mV of<br>Overshoot (Vovs) <sup>[3][4]</sup>   |                                              | -    | -   | 1050 | 1150                                  | mV   |
| V <sub>MIN</sub>  | Absolute Min Voltage<br>Includes -300mV of<br>Undershoot (Vuds) <sup>[3][5]</sup> | Across all settings in this table at 100MHz. | -150 | -   | -    | -300                                  | TIV  |
| V <sub>HIGH</sub> | Voltage High <sup>[3]</sup>                                                       | V <sub>HIGH</sub> set to 800mV.              | 710  | 815 | 915  | -                                     | mV   |
| V <sub>LOW</sub>  | Voltage Low [3]                                                                   | VHIGH SET TO ODDITIV.                        | -35  | 20  | 75   | -                                     | 111V |



|                     | 1                                                          | 1                                                                   | 1   |     |      | 1          |      |  |
|---------------------|------------------------------------------------------------|---------------------------------------------------------------------|-----|-----|------|------------|------|--|
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3]</sup>                      | V <sub>HIGH</sub> set to 800mV, scope                               | 285 | 410 | 500  | 250 to 550 |      |  |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var) <sup>[3]</sup><br>[6][8]            | averaging off.                                                      | -25 | 35  | 105  | 140        |      |  |
|                     |                                                            | V <sub>HIGH</sub> set to 800mV, Fast slew rate, scope averaging on. | 2.1 | 3   | 3.7  | 2 to 4     |      |  |
| dv/dt               | Slew Rate <sup>[9][10]</sup>                               | V <sub>HIGH</sub> set to 800mV, Slow slew rate, scope averaging on. | 1.6 | 2.6 | 3.4  | 1.5 to 3.5 | V/ns |  |
| $\Delta T_{R/F}$    | Rise/Fall Matching <sup>[3][11]</sup>                      | V <sub>HIGH</sub> set to 800mV. Fast slew rate.                     | -   | 4   | 16   | 20         | %    |  |
| ΔT <sub>R/F</sub>   | Rise/Fall Matching <sup>[3][11]</sup>                      | V <sub>HIGH</sub> set to 800mV. Slow slew rate.                     | -   | 3.5 | 15.5 | 20         | %    |  |
| V <sub>HIGH</sub>   | Voltage High <sup>[3]</sup>                                | V <sub>HIGH</sub> set to 900mV.                                     | 802 | 907 | 1012 | -          |      |  |
| $V_{LOW}$           | Voltage Low [3]                                            | VHIGH Set to 900mv.                                                 | -38 | 21  | 80   | -          |      |  |
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3]</sup>                      | V <sub>HIGH</sub> set to 900mV, scope                               | 320 | 450 | 540  | 300 to 600 | mV   |  |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var) <sup>[3]</sup><br><sup>[6][8]</sup> | averaging off.                                                      | -35 | 40  | 115  | 140        |      |  |
|                     |                                                            | V <sub>HIGH</sub> set to 900mV, Fast slew rate, scope averaging on. | 2.1 | 3.0 | 3.9  | 2 to 4     |      |  |
| dv/dt               | Slew Rate <sup>[9][10]</sup>                               | V <sub>HIGH</sub> set to 900mV, Slow slew rate, scope averaging on. | 1.6 | 2.8 | 3.4  | 1.5 to 3.5 | V/ns |  |
| $\Delta T_{R/F}$    | Rise/Fall Matching [3][11]                                 | V <sub>HIGH</sub> set to 900mV. Fast slew rate.                     | -   | 5   | 19.7 | 20         | %    |  |
| T <sub>R/F</sub>    | Rise/Fall Matching [3][11]                                 | V <sub>HIGH</sub> set to 900mV. Slow slew rate.                     | -   | 4.9 | 19.5 | 20         | %    |  |
| t <sub>DC</sub>     | Output Duty Cycle [9]                                      | V <sub>T</sub> = 0V differential.                                   | 48  | 50  | 52   | 45 to 55   | %    |  |

1. Standard high impedance load with  $C_L=2pF$ . For more information, see Test Loads.

- 2. The specification limits are taken from either the *PCle Base Specification Revision 6.0* or from relevant **x86** processor specifications, whichever is more stringent.
- 3. Measured from single-ended waveform.
- 4. Defined as the maximum instantaneous voltage including overshoot.
- 5. Defined as the minimum instantaneous voltage including undershoot.
- 6. Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.
- 7. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 8. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system.
- 9. Measured from differential waveform.
- 10. Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.
- 11. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.



| Symbol          | Parameter                                 | Conditions                                                    | MIN  | ТҮР | MAX  | Unit |
|-----------------|-------------------------------------------|---------------------------------------------------------------|------|-----|------|------|
| VOH             | Output High Voltage [2]                   |                                                               | 630  | 800 | 1003 |      |
| VOL             | Output Low Voltage [2]                    | Vнідн = 800mV, Fast Slew Rate, 25MHz,<br>156.25MHz, 312.5MHz. | -150 | 15  | 160  |      |
| VCROSS          | Crossing Voltage (abs) [3]                |                                                               | 230  | 395 | 570  | mV   |
| ΔVCROS<br>S     | Crossing Voltage (var) [3][4][5]          |                                                               | -    | 50  | 140  |      |
| tR              | Rise Time [2]<br>VT = 20% to 80% of swing |                                                               | 135  | 480 | 780  | ps   |
| tF              | Fall Time [2]<br>VT = 20% to 80% of swing |                                                               | 155  | 425 | 748  | ps   |
| VOH             | Output High Voltage [2]                   |                                                               | 700  | 890 | 1100 |      |
| VOL             | Output Low Voltage [2]                    |                                                               | -155 | 30  | 195  |      |
| VCROSS          | Crossing Voltage (abs) [3]                |                                                               | 260  | 430 | 640  | mV   |
| ΔVCROS<br>S     | Crossing Voltage (var) [3][4][5]          | VHIGH = 900mV, Fast Slew Rate, 25MHz,                         | -    | 40  | 165  |      |
| tR              | Rise Time [2]<br>VT = 20% to 80% of swing | 156.25MHz, 312.5MHz.                                          | 160  | 500 | 870  | ps   |
| tF              | Fall Time [2]<br>VT = 20% to 80% of swing |                                                               | 150  | 430 | 765  | ps   |
| t <sub>DC</sub> | Output Duty Cycle [6]                     | Across all settings in this table, VT = 0V.                   | 47   | 50  | 52   | %    |

#### Table 8. RS2CB19008A 85Ω CLK AC/DC Characteristics - Non-PCIe, Source-Terminated Loads [1]

Standard high impedance load with CL = 2pF. See Test Loads.
 Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS

5. for any particular system.

6. Measured from differential waveform.

#### Table 9. RS2CB19008A 85Ω CLK AC/DC Characteristics - Non-PCle. Double-Terminated Loads <sup>[1]</sup>

|                    | Table 3. KS2CD 19000A 0522 CER AC/DC Characteristics - Non-Ficle, Double-Terminated Loads 1-1 |                                                                                            |      |     |     |        |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|-----|-----|--------|--|--|--|--|
| Symbol             | Parameter                                                                                     | Conditions                                                                                 | MIN  | ТҮР | MAX | Unit   |  |  |  |  |
| V <sub>OH</sub>    | Output High Voltage [2]                                                                       |                                                                                            | 370  | 430 | 475 |        |  |  |  |  |
| V <sub>OL</sub>    | Output Low Voltage [2]                                                                        |                                                                                            | -30  | 11  | 60  | mV     |  |  |  |  |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                                                         | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,                                                 | 150  | 215 | 245 | mv     |  |  |  |  |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                                                              | 25MHz, 156.25MHz, 312.5MHz<br>(amplitude is reduced by ~50% due to<br>double termination). | -    | 8   | 40  |        |  |  |  |  |
| +_                 | Rise Time <sup>[2]</sup>                                                                      |                                                                                            | 205  | 320 | 570 | ps     |  |  |  |  |
| t <sub>R</sub>     | $V_T = 20\%$ to 80% of swing                                                                  |                                                                                            | 205  | 320 | 570 | μs     |  |  |  |  |
|                    | Fall Time <sup>[2]</sup>                                                                      |                                                                                            | 100  | 200 | 450 |        |  |  |  |  |
| t <sub>F</sub>     | $V_T = 20\%$ to 80% of swing                                                                  |                                                                                            | 120  | 300 | 450 | ps     |  |  |  |  |
| V <sub>OH</sub>    | Output High Voltage [2]                                                                       |                                                                                            | 385  | 490 | 555 |        |  |  |  |  |
| V <sub>OL</sub>    | Output Low Voltage [2]                                                                        |                                                                                            | -30  | 12  | 60  | mV     |  |  |  |  |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                                                         | V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                                 | 170  | 220 | 265 | - 111V |  |  |  |  |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                                                              | 25MHz, 100MHz, 156.25MHz,                                                                  | -    | 8   | 45  |        |  |  |  |  |
|                    | Rise Time <sup>[2]</sup>                                                                      | 312.5MHz (amplitude is reduced by ~50% due to double termination).                         | 045  | 000 | 010 |        |  |  |  |  |
| t <sub>R</sub>     | $V_T = 20\%$ to 80% of swing                                                                  |                                                                                            | 215  | 330 | 610 | ps     |  |  |  |  |
|                    | Fall Time [2]                                                                                 | 1                                                                                          | 4.40 | 240 | 100 |        |  |  |  |  |
| t <sub>F</sub>     | $V_T = 20\%$ to 80% of swing                                                                  |                                                                                            | 140  | 310 | 400 | ps     |  |  |  |  |

### RS2CB19008A Series Clock Buffer

PCIe Gen5/6 1:8 Fan out Buffer with LOS



| t <sub>DC</sub> | Output Duty Cycle [6] | Across all settings in this table, $V_T = 0V$ . | 49 | 50 | 51 | % |  |
|-----------------|-----------------------|-------------------------------------------------|----|----|----|---|--|
|-----------------|-----------------------|-------------------------------------------------|----|----|----|---|--|

- 1. Both Tx and Rx are terminated (double-terminated) with CL = 2pF. This reduces amplitude by 50%. See Test Loads.
- 2. Measured from single-ended waveform.
- Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.
   Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing
- Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossin points for this measurement.
- 5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.
- Measured from differential waveform.
   7.

#### Table 10. RS2CB19008A 100Ω CLK AC/DC Characteristics - Non-PCIe Apps, Source-Terminated Loads <sup>[1]</sup>

| Symbol             | Parameter                                            | Condition                                                                                                                 | MIN | TYP | МАХ  | Unit |
|--------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|------|------|
| V <sub>OH</sub>    | Output High Voltage [2]                              |                                                                                                                           | 700 | 795 | 910  |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               | VHIGH = 800mV, Fast Slew Rate,<br>156.25MHz, 312.5MHz.<br>(Slow slew rate is not recommended for<br>frequencies > 100MHz) | -70 | 30  | 120  |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                |                                                                                                                           | 252 | 375 | 495  | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     |                                                                                                                           | 0   | 35  | 135  |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                           | 205 | 320 | 590  | ps   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                           | 145 | 315 | 585  | ps   |
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                           | 750 | 885 | 1020 |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               |                                                                                                                           | -80 | 20  | 145  | mV   |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | VHIGH = 900mV, Fast Slew Rate,                                                                                            | 260 | 400 | 545  | 1110 |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | 156.25MHz, 312.5MHz.<br>(Slow slew rate is not recommended for                                                            | 0   | 45  | 145  |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | frequencies > 100MHz)                                                                                                     | 200 | 390 | 610  | ps   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                           | 120 | 325 | 595  | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                                                                           | 48  | 50  | 52   | %    |

1. Standard high impedance load with CL= 2pF. For more information, see Test Loads.

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.



| Symbol             | Parameter                                 | Condition                                                                                                                                                                                | MIN | ТҮР | МАХ | Unit |
|--------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| V <sub>OH</sub>    | Output High Voltage [2]                   |                                                                                                                                                                                          | 360 | 395 | 430 |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                    |                                                                                                                                                                                          | -25 | 8   | 45  |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) [3]                | VHIGH = 800mV, Fast Slew Rate,<br>156.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double<br>termination. (Slow slew rate is not<br>recommended for frequencies ><br>100MHz) | 150 | 185 | 215 | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]          |                                                                                                                                                                                          | -12 | 10  | 30  |      |
| t <sub>R</sub>     | Rise Time [2]<br>VT = 20% to 80% of swing |                                                                                                                                                                                          | 150 | 310 | 557 | ps   |
| t <sub>F</sub>     | Fall Time [2]<br>VT = 20% to 80% of swing |                                                                                                                                                                                          | 110 | 260 | 380 | ps   |
| V <sub>OH</sub>    | Output High Voltage [2]                   |                                                                                                                                                                                          | 380 | 480 | 560 |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                    | _                                                                                                                                                                                        | -30 | 10  | 50  | .,   |
| V <sub>CROSS</sub> | Crossing Voltage (abs) [3]                | Vніgн = 900mV, Fast Slew Rate,                                                                                                                                                           | 165 | 220 | 280 | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]          | <ul> <li>156.25MHz, 312.5MHz - amplitude is<br/>reduced by ~50% due to double</li> </ul>                                                                                                 | -18 | 10  | 30  |      |
| t <sub>R</sub>     | Rise Time [2]<br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for<br>frequencies >100MHz)                                                                                                           | 170 | 320 | 610 | ps   |
| t <sub>F</sub>     | Fall Time [2]<br>VT = 20% to 80% of swing |                                                                                                                                                                                          | 130 | 305 | 400 | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                     | Across all settings in this table, VT = 0V.                                                                                                                                              | 48  | 50  | 52  | %    |

#### Table 11. RS2CB19008A 100Ω CLK AC/DC Characteristics–Non-PCIe Apps, Double-Terminated Loads <sup>[1]</sup>

1. Both Tx and Rx are terminated (double-terminated) with C<sub>L</sub>= 2pF. This reduces amplitude by 50%. For more information, see Test Loads.

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.

## 2.5.4 CLKIN AC/DC Characteristics

#### Table 12. CLKIN AC/DC Characteristic

| Symbol             | Parameter               | Condition                               | <b>MIN</b> [1] | ТҮР | MAX  | Unit |
|--------------------|-------------------------|-----------------------------------------|----------------|-----|------|------|
| V <sub>CROSS</sub> | Input Crossover Voltage | -                                       | 100            | -   | 1400 | mV   |
| V <sub>SWING</sub> | Input Swing             | Differential value.                     | 200            | -   | -    | mV   |
| dv/dt              | Input Slew Rate         | Measured differentially. <sup>[2]</sup> | 0.6            | -   | -    | V/ns |

1. For values required for performance, see the Phase Jitter tables.

2. Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero-crossing.

### 2.5.5 Output-to-Output and Input-to-Output Skew

#### Table 13. RS2CB19008A Output-to-Output and Input-to-Output Skew<sup>[1]</sup>

| Symbol          | Parameter             | Condition                                              | MIN | ТҮР | МАХ | Unit |
|-----------------|-----------------------|--------------------------------------------------------|-----|-----|-----|------|
| t               | Output-to-Output Skew | Any two outputs, all outputs at fast slew rate.        | -   | 38  | 50  | ps   |
| t <sub>SK</sub> | [2]                   | Any two outputs, all outputs at slow slew rate.        | -   | 40  | 60  | ps   |
|                 | Input-to-Output Delay | Clock in to any output, all outputs at fast slew rate. | 1.1 | 1.2 | 1.4 | ns   |



### RS2CB19008A Series Clock Buffer

PCIe Gen5/6 1:8 Fan out Buffer with LOS

| t <sub>PD</sub>           | Double-Terminated [3]                             | Clock in to any output, all outputs at slow slew rate. | 1.2 | 1.4 | 1.6 | ns    |
|---------------------------|---------------------------------------------------|--------------------------------------------------------|-----|-----|-----|-------|
| taa Input-to-Output Delay |                                                   | Clock in to any output, all outputs at fast slew rate. | 1.2 | 1.4 | 1.6 | ns    |
| t <sub>PD</sub>           | Source-Terminated <sup>[3]</sup>                  | Clock in to any output, all outputs at slow slew rate. | 1.4 | 1.5 | 1.8 | ns    |
| $\Delta t_{PD}$           | Input-to-Output Delay<br>Variation <sup>[3]</sup> | A single device, over temperature and voltage.         | -   | 1.4 | 2   | ps/°C |

1. For more information, see Test Loads.

2. This parameter is defined in accordance with JEDEC Standard 65.

3. Defined as the time between to output rising edge and the input rising edge that caused it.

### 2.5.6 I/O Signals

| Table 14. I | /O Electrical | Characteristics |
|-------------|---------------|-----------------|
|-------------|---------------|-----------------|

| Symbol | Parameter                                | Condition                                                 | MIN  | ТҮР | MAX          | Unit |
|--------|------------------------------------------|-----------------------------------------------------------|------|-----|--------------|------|
| Viн    | Input High Voltage [1][2]                | Single-ended inputs, unless otherwise                     | 2    | -   | VDD +<br>0.3 | V    |
| VIL    | Input Low Voltage [1][2]                 | listed.                                                   | -0.3 | -   | 0.8          | V    |
| Vih    | Input High Voltage                       |                                                           | 2.4  | -   | VDD+0.3      | V    |
| Vim    | Input Mid Voltage                        | SADR_tri[1:0].                                            | 1.2  | -   | 1.8          | V    |
| VIL    | Input Low Voltage                        |                                                           | -0.3 | -   | 0.8          | V    |
| Vон    | Output High Voltage [2]                  | SBI_OUT, IOH = -2mA                                       | 2.4  | 3.2 | VDD +<br>0.3 | V    |
| Vol    | Output Low Voltage [2]                   | SBI_OUT, IOL = 2mA                                        | -    | 0.1 | 0.4          | V    |
|        |                                          | CLKIN                                                     | -    | -   | 87           |      |
|        | Input Leakage Current<br>High, Vıℕ = VDD | CLKINb                                                    | -    | -   | 87           |      |
|        |                                          | Single-ended inputs, unless otherwise listed.             | 25   | -   | 35           | μA   |
|        | -                                        | PWRGD_PWRDNb                                              | -1   | -   | 5            |      |
|        |                                          | SADR_tri[1:0]                                             | 25   | -   | 35           |      |
|        |                                          | CLKIN                                                     | -12  | -   | -6           |      |
|        | Input Leakage Current<br>Low, VIN = 0V   | CLKINb                                                    | -3   | -   | 3            |      |
| lıL    |                                          | Single-ended inputs, unless otherwise listed.             | -3   | -   | 3            | μA   |
|        |                                          | PWRGD_PWRDNb                                              | -35  | -   | -20          |      |
|        |                                          | SADR_tri[1:0]                                             | -35  | -   | -20          |      |
|        | PD_CLKIN                                 | Value of internal pull-down resistor to<br>ground (CLKIN) | -    | 53  | -            |      |
| Rp     | PU_CLKINb                                | Value of internal pull-up resistor to 0.5V (CLKINb).      | -    | 57  | -            | kΩ   |
|        | Pull-up/Pull-down<br>Resistor            | Single-ended inputs.                                      | -    | 125 | -            |      |
|        |                                          | SBI_OUT pin.                                              | -    | 50  | -            | Ω    |
| Zo     | Output Impedance                         | CLK outputs, RS2CB19008A (single-<br>ended value).        | -    | 41  | -            | Ω    |
|        |                                          | CLK outputs, RS2CB19008A -100<br>(single-ended value).    | -    | 48  | -            | Ω    |

1. For SCLK and SDATA, see the SMBus Electrical Characteristics table.

2. These values are compliant with JESD8C.01.

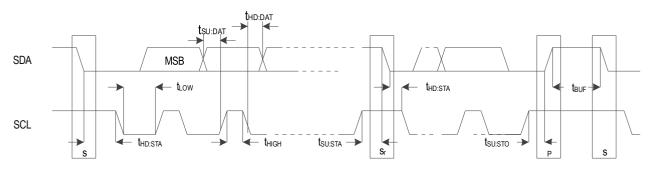


## 2.5.7 Power Supply Current

#### Table 15. Power Supply Current

| Symbol                | Parameter                                                                                                                                                                                | Parameter Condition                                                                                                        |   | ТҮР | МАХ | Unit |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---|-----|-----|------|
|                       |                                                                                                                                                                                          | 85Ω impedance, fast slew rate, source-<br>terminated load at 100MHz.<br>PWRGD_PWRDNb = 1. VDD=3.3V                         | - | 80  | 88  |      |
| IDDCLK                | V <sub>DDCLK</sub> Operating Current                                                                                                                                                     | 85Ω impedance, fast slew rate, double-<br>terminated load at 100MHz.<br>PWRGD_PWRDNb = 1.VDD=3.3V                          | - | 93  | 103 |      |
|                       |                                                                                                                                                                                          | $85\Omega$ impedance, fast slew rate, source-<br>terminated load at maximum output frequency.<br>PWRGD_PWRDNb = 1.VDD=3.3V | - | 105 | 115 | mA   |
|                       |                                                                                                                                                                                          | 85Ω impedance, fast slew rate, double-<br>terminated load at maximum output frequency.<br>PWRGD_PWRDNb = 1.VDD=3.3V        | - | 122 | 130 |      |
| I <sub>DDCLK_PD</sub> | V <sub>DDCLK</sub> Power-down Current                                                                                                                                                    | PWRGD_PWRDNb = 0.VDD=3.3V                                                                                                  |   | 1   | 3   | mA   |
| 1                     | V Operating Current                                                                                                                                                                      | 85Ω impedance, fast slew rate, at<br>100MHz.<br>PWRGD_PWRDNb = 1.VDD=3.3V                                                  | - | 29  | 35  | mA   |
| I <sub>DDR</sub>      | R         V <sub>DDR</sub> Operating Current         I WICD_1 WICDIG = 1.VDD_3.           85Ω         impedance, fast slew ramaximum output frequency.           PWRGD_PWRDNb = 1.VDD=3. |                                                                                                                            | - | 36  | 40  | mA   |
| I <sub>DDR_PD</sub>   | V <sub>DDR</sub> Power-down Current                                                                                                                                                      | PWRGD_PWRDNb = 0 VDD=3.3V                                                                                                  | - | 3.8 | 5   | mA   |
|                       |                                                                                                                                                                                          | 85Ω impedance, fast slew rate, source-<br>terminated load at 100MHz.<br>PWRGD_PWRDNb = 1. VDD=1.8V                         | - | 65  | 70  |      |
| <b>I</b>              | V Operating Current                                                                                                                                                                      | 85Ω impedance, fast slew rate, double-<br>terminated load at 100MHz.<br>PWRGD_PWRDNb = 1.VDD=1.8V                          | - | 78  | 83  |      |
| IDDCLK                | V <sub>DDCLK</sub> Operating Current                                                                                                                                                     | 85Ω impedance, fast slew rate, source-<br>terminated load at maximum output frequency.<br>PWRGD_PWRDNb = 1.VDD=1.8V        | - | 80  | 85  | mA   |
|                       |                                                                                                                                                                                          | $85\Omega$ impedance, fast slew rate, double-<br>terminated load at maximum output frequency.<br>PWRGD_PWRDNb = 1.VDD=1.8V | - | 88  | 93  |      |
| I <sub>DDCLK_PD</sub> | V <sub>DDCLK</sub> Power-down Current                                                                                                                                                    | PWRGD_PWRDNb = 0.VDD=1.8V                                                                                                  |   | 1   | 3   | mA   |
|                       |                                                                                                                                                                                          | 85Ω impedance, fast slew rate, at<br>100MHz.<br>PWRGD_PWRDNb = 1.VDD=1.8V                                                  | - | 24  | 26  | mA   |
| I <sub>DDR</sub>      | V <sub>DDR</sub> Operating Current                                                                                                                                                       | 85Ω impedance, fast slew rate, at<br>maximum output frequency.<br>PWRGD_PWRDNb = 1.VDD=1.8V                                | - | 28  | 31  | mA   |
| I <sub>DDR_PD</sub>   | V <sub>DDR</sub> Power-down Current                                                                                                                                                      | PWRGD_PWRDNb = 0 VDD=1.8V                                                                                                  | - | 3.8 | 5   | mA   |




### 2.5.8 SMBus Electrical Characteristics

#### Table 16. SMBus DC Electrical Characteristics <sup>[1]</sup>

| Symbol           | Parameter                                      | Condition      | MIN      | TYP  | МАХ     | Unit |
|------------------|------------------------------------------------|----------------|----------|------|---------|------|
| VIH              | High-level Input Voltage for SMBCLK and SMBDAT | -              | 0.8 VDD  | -    | -       |      |
| V <sub>IL</sub>  | Low-level Input Voltage for SMBCLK and SMBDAT  | -              | -        | -    | 0.3 VDD |      |
| V <sub>HYS</sub> | Hysteresis of Schmitt Trigger Inputs           | -              | 0.05 VDD | -    | -       | V    |
| V <sub>OL</sub>  | Low-level Output Voltage for SMBCLK and SMBDAT | $I_{OL} = 4mA$ | -        | 0.28 | 0.4     |      |
| I <sub>IN</sub>  | Input Leakage Current per Pin                  | -              | [2]      | -    | [2]     | μA   |
| CB               | Capacitive Load for Each Bus Line              | -              | -        | -    | 400     | pF   |

1.  $V_{\text{OH}}$  is governed by the  $V_{\text{PUP}},$  the voltage rail to which the pull-up resistors are connected.

2. For more information, see I/O Electrical Characteristics.



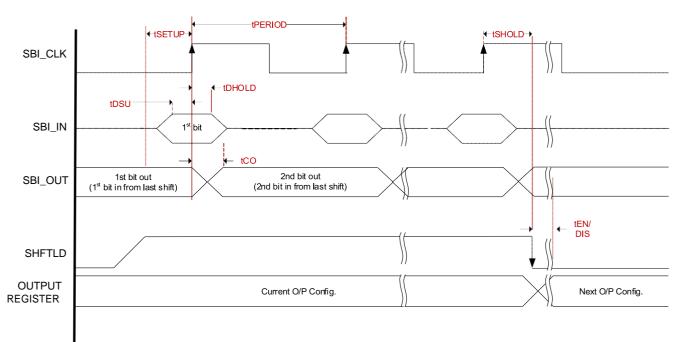
#### Figure 3. SMBus Slave Timing Diagram Table 17. SMBus AC Electrical Characteristics

| Symbol                | Parameter                                     | Condition | 100kH | z Class | 400kHz | Unit |     |
|-----------------------|-----------------------------------------------|-----------|-------|---------|--------|------|-----|
| Symbol                | Falameter                                     | Condition | MIN   | MAX     | MIN    | MAX  |     |
| f <sub>SMB</sub>      | SMBus Operating Frequency                     | [1]       | 10    | 100     | 10     | 400  | kHz |
| t <sub>BUF</sub>      | Bus free time between STOP and STARTCondition | -         | 4.7   | -       | 1.3    | -    | μs  |
| t <sub>HD:STA</sub>   | Hold Time after (REPEATED) STARTCondition     | [2]       | 4     | -       | 0.6    | -    | μs  |
| t <sub>SU:STA</sub>   | REPEATED START Condition Setup Time           | -         | 4.7   | -       | 0.6    | -    | μs  |
| t <sub>SU:STO</sub>   | STOP Condition Setup Time                     | -         | 4     | -       | 0.6    | -    | μs  |
| t <sub>HD:DAT</sub>   | Data Hold Time                                | [3]       | 300   | -       | 300    | -    | ns  |
| t <sub>SU:DAT</sub>   | Data Setup Time                               | -         | 250   | -       | 100    | -    | ns  |
| t <sub>TIMEOUT</sub>  | Detect SCL_SCLK Low Timeout                   | [4]       | 25    | 35      | 25     | 35   | ms  |
| t <sub>TIMEOUT</sub>  | Detect SDA_nCS Low Timeout                    | [5]       | 25    | 35      | 25     | 35   | ms  |
| t <sub>LOW</sub>      | Clock Low Period                              | -         | 4.7   | -       | 1.3    | -    | μs  |
| t <sub>HIGH</sub>     | Clock High Period                             | [6]       | 4     | 50      | 0.6    | 50   | μs  |
| t <sub>LOW:SEXT</sub> | Cumulative Clock Low Extend Time - Slave      | [7]       | Ν     | /A      | N      | /A   | ms  |
| t <sub>LOW:MEXT</sub> | Cumulative Clock Low Extend Time - Master     | [8]       | N     | /A      | N      | /A   | ms  |
| t <sub>F</sub>        | Clock/Data Fall Time                          | [9]       | -     | 300     | -      | 300  | ns  |
| t <sub>R</sub>        | Clock/Data Rise Time                          | [9]       | -     | 1000    | -      | 300  | ns  |
| t <sub>SPIKE</sub>    | Noise Spike Suppression Time                  | [10]      | -     | -       | 0      | 50   | ns  |

1. Power must be applied and PWRGD\_PWRDNb must be a 1 for the SMBus to be active.

2. A master should not drive the clock at a frequency below the minimum f<sub>SMB</sub>. Further, the operating clock frequency should not be reduced below the minimum value of fSMB due to periodic clock extending by slave devices as defined in Section 5.3.3 of System Management




Bus (SMBus) Specification, Version 3.1, dated 19 Mar 2018. This limit does not apply to the bus idle condition, and this limit is independent from the  $t_{LOW: SEXT}$  and  $t_{LOW: MEXT}$  limits. For example, if the SMBCLK is high for  $t_{HIGH,MAX}$ , the clock must not be periodically stretched longer than  $1/f_{SMB,MIN} - t_{HIGH,MAX}$ . This requirement does not pertain to a device that extends the SMBCLK low for data processing of a received byte, data buffering and so forth for longer than 100 µs in a non-periodic way.

- 3. A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the V<sub>IH</sub>,MIN of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK.
- 4. Slave devices may have caused other slave devices to hold SDA low. This is the maximum time that a device can hold SMBDAT low after the master raises SMBCLK after the last bit of a transaction. A slave device may detect how long SDA is held low and release SDA after the time out period.
- 5. Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds the value of t<sub>TIMEOUT,MIN</sub>. After the master in a transaction detects this condition, it must generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able to receive a new START condition no later than t<sub>TIMEOUT,MAX</sub>. Typical device examples include the host controller, and embedded controller, and most devices that can master the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the device that is forcing the timeout holds the SMBCLK low for t<sub>TIMEOUT,MAX</sub> or longer.
- 6. The device has the option of detecting a timeout if the SMBDATA pin is also low for this time.
- t<sub>HIGH,MAX</sub> provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than t<sub>HIGH,MAX</sub>.
- 8. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master will also extend the clock causing the combined clock low time to be greater than tLOW:MEXT on a given byte. This parameter is measured with a full speed slave device as the sole target of the master.
- 9. The rise and fall time measurement limits are defined as follows:

Rise Time Limits:  $(V_{IL:MAX} - 0.15 V)$  to  $(V_{IH:MIN} + 0.15 V)$ 

Fall Time Limits:  $(V_{IH:MIN} + 0.15 V)$  to  $(V_{IL:MAX} - 0.15 V)$ 

10. Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.



### 2.5.9 Side-Band Interface

#### Figure 4. Side-Band Interface Timing

Figure 4 is the timing diagram and Table 18 provides the electrical characteristics for the Side-Band Interface. The SBI supports clock rates up to 25MHz.



| Symbol              | Parameter                | Condition                                                                                   | MIN | ТҮР | MAX | Unit   |
|---------------------|--------------------------|---------------------------------------------------------------------------------------------|-----|-----|-----|--------|
| t <sub>PERIOD</sub> | Clock Period             | Clock period.                                                                               | 40  | -   | -   | ns     |
| t <sub>SETUP</sub>  | SHFT Setup Time to Clock | SHFT_LDB high to SBI_CLK rising edge.                                                       | 10  | -   | -   | ns     |
| t <sub>DSU</sub>    | SBI_IN Setup Time        | SBI_IN setup to SBI_CLK rising edge.                                                        | 5   | -   | -   | ns     |
| t <sub>DHOLD</sub>  | SBI_IN Hold Time         | SBI_IN hold after SBI_CLK rising edge.                                                      | 2   | -   | -   | ns     |
| t <sub>co</sub>     | SBI_CLK to SBI_OUT       | SBI_CLK rising edge to<br>SBI_OUT valid.                                                    | 2   | -   | -   | ns     |
| t <sub>SHOLD</sub>  | SHFT Hold Time           | SHFT_LDB hold (high) after SBI_CLK<br>rising edge (SBI_CLK to SHFT_LDB<br>falling edge)     | 10  | -   | -   | ns     |
| t <sub>EN/DIS</sub> | Enable/Disable Time      | Delay from SHFT_LDB falling edge to next output configuration taking effect. <sup>[1]</sup> | 4   | -   | 12  | clocks |
| t <sub>SLEW</sub>   | Slew Rate                | SBI_CLK (between 20% and 80%). <sup>[2]</sup>                                               | 0.7 | -   | 6   | V/ns   |

#### Table 18. Electrical Characteristics – Side-Band Interface



## 3. Test Loads

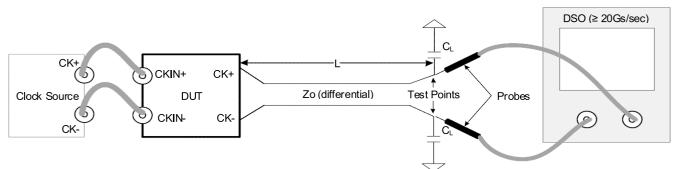



Figure 5. AC/DC Test Load for Differential Outputs (Standard PCIe Source-Terminated)

#### Table 19. Parameters for AC/DC Test Load (Standard PCIe Source-Terminated)

| Device                  | Clock Source | Rs (ohms) | Zo (ohms) | L (cm) | C <sub>L</sub> (pF) |
|-------------------------|--------------|-----------|-----------|--------|---------------------|
| RS2CB19008A             | SMA100B      | Internal  | 85        | 25.4   | 2                   |
| RS2CB19008A <b>-100</b> | SMA100B      | Internal  | 100       | 25.4   | 2                   |

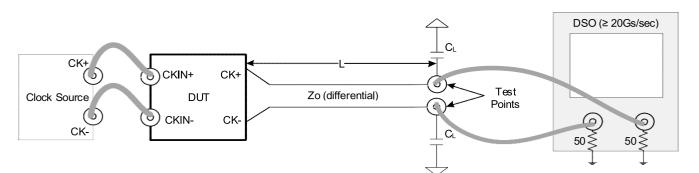



Figure 6. AC/DC Test Load for Differential Outputs (Double-Terminated)

|                                                                    | Table 20. Parameters for AC/DC Test Load (Double-Terminated) |          |    |      |   |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------|----------|----|------|---|--|--|--|
| Device Clock Source Rs (ohms) Zo (ohms) L (cm) C <sub>L</sub> (pF) |                                                              |          |    |      |   |  |  |  |
| RS2CB19008A                                                        | SMA100B                                                      | Internal | 85 | 25.4 | 2 |  |  |  |
| RS2CB19008A-100 SMA100B Internal 100 25.4 2                        |                                                              |          |    |      |   |  |  |  |

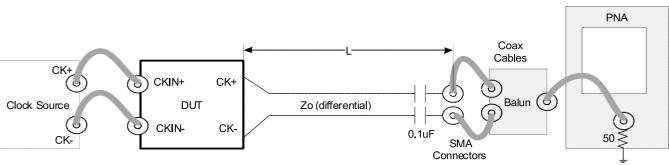



Figure 7. Test Load for PCIe Phase Jitter Measurements

| Table 21. | Parameters   | for | PCle | Gen5  | .Jitter | Measurement |  |
|-----------|--------------|-----|------|-------|---------|-------------|--|
|           | i urumeter 3 | 101 |      | OCIIO | ontion  | measurement |  |

| Device                  | Clock Source | Rs (ohms) | Zo (ohms) | L (cm) <sup>[1]</sup> | С <sub>L</sub> (рF) |  |  |  |
|-------------------------|--------------|-----------|-----------|-----------------------|---------------------|--|--|--|
| RS2CB19008A             | SMA100B      | Internal  | 85        | 25.4                  | 2                   |  |  |  |
| RS2CB19008A <b>-100</b> | SMA100B      | Internal  | 100       | 25.4                  | 2                   |  |  |  |
|                         |              |           |           |                       |                     |  |  |  |

PCIe Gen6 specifies L = 0cm for 32 and 64 GT/s. L = 25.4cm is more conservative.



## 4. SMBus Interface

### 4.1 Write Sequence

- Controller (host) sends a start bit
- Controller (host) sends the write address
- RS2CB19008A clock will acknowledge
- Controller (host) sends the beginning byte Location= N
- RS2CB19008A clock will **acknowledge**
- Controller (host) sends the byte count = X
- RS2CB19008A clock will **acknowledge**
- Controller (host) starts sending Byte N through Byte N+X-1
- RS2CB19008A clock will **acknowledge** each byte one at a time
- Controller (host) sends a stop bit

|           | Index Block Write Operation |        |                                 |  |  |  |  |  |
|-----------|-----------------------------|--------|---------------------------------|--|--|--|--|--|
| Controll  | er (Host)                   |        | RS2CB19008A<br>(Slave/Receiver) |  |  |  |  |  |
| Т         | start bit                   |        |                                 |  |  |  |  |  |
| Slave A   | Address                     |        |                                 |  |  |  |  |  |
| WR        | Write                       |        |                                 |  |  |  |  |  |
|           |                             |        | ACK                             |  |  |  |  |  |
| Beginning | g Byte = N                  |        |                                 |  |  |  |  |  |
|           |                             |        | ACK                             |  |  |  |  |  |
| Data Byte | Count = X                   |        |                                 |  |  |  |  |  |
|           |                             |        | ACK                             |  |  |  |  |  |
| Beginnin  | g Byte N                    |        |                                 |  |  |  |  |  |
|           |                             |        | ACK                             |  |  |  |  |  |
| 0         |                             | ×      |                                 |  |  |  |  |  |
| 0         |                             | X Byte | 0                               |  |  |  |  |  |
| 0         |                             | ē      | 0                               |  |  |  |  |  |
|           |                             |        | 0                               |  |  |  |  |  |
| Byte N    | + X - 1                     |        |                                 |  |  |  |  |  |
|           |                             |        | ACK                             |  |  |  |  |  |
| Р         | stop bit                    |        |                                 |  |  |  |  |  |



### 4.2 Read Sequence

- Controller (host) will send a start bit
- Controller (host) sends the write address
- RS2CB19008A clock will acknowledge
- Controller (host) sends the beginning byte Location= N
- RS2CB19008A clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- RS2CB19008A clock will **acknowledge**
- RS2CB19008A clock will send the data byte count = X
- RS2CB19008A clock sends Byte N+X-1
- RS2CB19008A clock sends Byte L through Byte X (if X(H) was written to Byte 7)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

|      | Index Block Read Operation |        |                                 |  |  |  |
|------|----------------------------|--------|---------------------------------|--|--|--|
| Con  | troller (Host)             |        | RS2CB19008A<br>(Slave/Receiver) |  |  |  |
| Т    | start bit                  | 1      |                                 |  |  |  |
| SI   | ave Address                |        |                                 |  |  |  |
| WR   | Write                      |        |                                 |  |  |  |
|      |                            |        | ACK                             |  |  |  |
| Begi | nning Byte = N             |        |                                 |  |  |  |
|      |                            |        | ACK                             |  |  |  |
| RT   | Repeat start               |        |                                 |  |  |  |
| SI   | ave Address                |        |                                 |  |  |  |
| RD   | Read                       |        |                                 |  |  |  |
|      |                            |        | ACK                             |  |  |  |
|      |                            |        |                                 |  |  |  |
|      |                            |        | Data Byte Count=X               |  |  |  |
|      | ACK                        |        |                                 |  |  |  |
|      |                            |        | Beginning Byte N                |  |  |  |
|      | ACK                        |        |                                 |  |  |  |
|      |                            | e      | 0                               |  |  |  |
|      | 0                          | X Byte | 0                               |  |  |  |
|      | 0                          | ×      | 0                               |  |  |  |
|      | 0                          |        |                                 |  |  |  |
|      |                            |        | Byte N + X - 1                  |  |  |  |
| N    | Not                        |        |                                 |  |  |  |
| Р    | stop bit                   | ]      |                                 |  |  |  |



# 4.3 SMBus Bit Types

| Bit Description | Definition              |
|-----------------|-------------------------|
| RO              | Read-only               |
| RW              | Read-write              |
| RW1C            | Read/Write '1' to clear |
| RESERVED        | Undefined do not write  |

# 4.4 Write Lock Functionality

| WRITE_LOCK | WRITE_LOCK RW1C | SMBus Write Protect |
|------------|-----------------|---------------------|
| 0          | 0               | No                  |
| 0          | 1               | Yes                 |
| 1          | 0               | Yes                 |
| 1          | 1               | Yes                 |

## 4.5 SMBus Address Decode

| Address   | Selection | Binary Value |   |   |   |   |   |   |        |           |
|-----------|-----------|--------------|---|---|---|---|---|---|--------|-----------|
| SADR_tri1 | SADR_tri0 | 7            | 6 | 5 | 4 | 3 | 2 | 1 | Rd/Wrt | Hex Value |
|           | 0         | 1            | 1 | 0 | 1 | 1 | 0 | 0 | 0      | D8        |
| 0         | М         | 1            | 1 | 0 | 1 | 1 | 0 | 1 | 0      | DA        |
|           | 1         | 1            | 1 | 0 | 1 | 1 | 1 | 1 | 0      | DE        |
|           | 0         | 1            | 1 | 0 | 0 | 0 | 0 | 1 | 0      | C2        |
| М         | М         | 1            | 1 | 0 | 0 | 0 | 1 | 0 | 0      | C4        |
|           | 1         | 1            | 1 | 0 | 0 | 0 | 1 | 1 | 0      | C6        |
|           | 0         | 1            | 1 | 0 | 0 | 1 | 0 | 1 | 0      | CA        |
| 1         | М         | 1            | 1 | 0 | 0 | 1 | 1 | 0 | 0      | СС        |
|           | 1         | 1            | 1 | 0 | 0 | 1 | 1 | 1 | 0      | CE        |



# 2.6 RS2CB19008A SMBus Registers

| Byte | Register                | Name       | Bit   | Туре | Default | Description                                                                | Definition                                                      |
|------|-------------------------|------------|-------|------|---------|----------------------------------------------------------------------------|-----------------------------------------------------------------|
|      |                         | RESERVED   | [7]   | RW   | 0       |                                                                            |                                                                 |
|      |                         | RESERVED   | [6]   | RW   | 0       |                                                                            | 0 = output is                                                   |
|      |                         | RESERVED   | [5]   | RW   | 0       |                                                                            | disabled (low/low)                                              |
| 0    | 0 OUTPUT_ENABLE_2       | RESERVED   | [4]   | RW   | 0       |                                                                            | 1 = output is<br>enabled                                        |
|      |                         | RESERVED   | [3]   | RW   | 0       |                                                                            | enabled                                                         |
|      |                         | RESERVED   | [2:0] | RW   | 1       |                                                                            |                                                                 |
|      |                         | CLK7_EN    | [7]   | RW   | 1       | Output Enable for CLK7                                                     | _                                                               |
|      |                         | CLK6_EN    | [6]   | RW   | 1       | Output Enable for CLK6                                                     | _                                                               |
|      |                         | CLK5_EN    | [5]   | RW   | 1       | Output Enable for CLK5                                                     |                                                                 |
|      |                         | RESERVED   | [4]   | RW   | 0       |                                                                            | 0 = output is<br>disabled (low/low)                             |
| 1    | OUTPUT_ENABLE_0         | RESERVED   | [3]   | RW   | 0       |                                                                            | 1 = output is                                                   |
|      |                         | RESERVED   | [2]   | RW   | 0       |                                                                            | enabled                                                         |
|      |                         | RESERVED   | [1]   | RW   | 0       |                                                                            | _                                                               |
|      |                         | RESERVED   | [0]   | RW   | 0       |                                                                            |                                                                 |
|      |                         | RESERVED   | [7]   | RW   | 0       |                                                                            |                                                                 |
|      |                         | RESERVED   | [6]   | RW   | 0       |                                                                            | 0 = output is<br>disabled (low/low)<br>1 = output is<br>enabled |
|      |                         | CLK13_EN   | [5]   | RW   | 1       | Output Enable for CLK13                                                    |                                                                 |
|      |                         | CLK12_EN   | [4]   | RW   | 1       | Output Enable for CLK12                                                    |                                                                 |
| 2    | OUTPUT_ENABLE_1         | CLK11_EN   | [3]   | RW   | 1       | Output Enable for CLK11                                                    |                                                                 |
|      |                         | CLK10_EN   | [2]   | RW   | 1       | Output Enable for CLK10                                                    |                                                                 |
|      |                         | RESERVED   | [1]   | RW   | 0       |                                                                            | _                                                               |
|      |                         | CLK8_EN    | [0]   | RW   | 1       | Output Enable for CLK8                                                     |                                                                 |
|      |                         | RB_OEb_12  | [7]   | RO   | 1'bX    | Status of OEb12                                                            | -                                                               |
|      |                         | RB_OEb_11  | [6]   | RO   | 1'bX    | Status of OEb11                                                            | -                                                               |
|      |                         | RB_OEb_10  | [5]   | RO   | 1'bX    | Status of OEb10                                                            | -                                                               |
|      |                         | RESERVED   | [4]   | RO   | 1'bX    |                                                                            | 0 = pin low                                                     |
| 3    | OEb_PIN_READBACK        | RB_OEb_8   | [3]   | RO   | 1'bX    | Status of OEb8                                                             | 1 = pin high                                                    |
|      |                         | RB_OEb_7   | [2]   | RO   | 1'bX    | Status of OEb7                                                             | _                                                               |
|      |                         | RB_OEb_6   | [1]   | RO   | 1'bX    | Status of OEb6                                                             | _                                                               |
|      |                         | RB_OEb_5   | [0]   | RO   | 1'bX    | Status of OEb5                                                             |                                                                 |
|      |                         | RESERVED   | [7:5] | RW   | 1'b111  |                                                                            | -                                                               |
| 4    | SBEN_RDB_A<br>CP_CONFIG | ACP_ENABLE | [4]   | RW   | 1       | Enable Automatic Clock<br>Parking to low/low when<br>LOS event is detected | 0 = disable ACP<br>1 = enable ACP                               |
|      |                         | RESERVED   | [3:1] | RW   | 1'b110  |                                                                            | -<br>0 = pin low                                                |
|      |                         | RB_SBI_ENQ | [0]   | RO   | 1'bX    | Status of SBI_ENQ                                                          | 1 = pin high                                                    |



### Table 22. RS2CB19008A SMBus Registers (Cont.)

| Byte | Register           | Name      | Bit   | Туре | Default | Description                                                                                    | Definition                                          |
|------|--------------------|-----------|-------|------|---------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 5    | VENDOR_REVISION_ID | RID       | [7:4] | RO   | 0x2     | REVISION ID, A revis<br>0000                                                                   | -                                                   |
|      |                    | VID       | [3:0] | RO   | 0x1     | VENDOR ID                                                                                      | -                                                   |
| 6    | DEVICE_ID          | DEVICE_ID | [7:0] | RO   | 0xC9    | Device ID                                                                                      | -                                                   |
|      |                    | RESERVED  | [7:5] | RW   | 0x0     | RESERVED                                                                                       | -                                                   |
| 7    | BYTE_COUNT         | BC        | [4:0] | RW   | 0x7     | Writing to this register<br>configures how many<br>bytes will be read back in<br>a block read. | -                                                   |
|      |                    | MASK7     | [7]   | RW   | 0       | Masks off Side-band<br>Disable for CLK7                                                        |                                                     |
|      |                    | MASK6     | [6]   | RW   | 0       | Masks off Side-band<br>Disable for CLK6                                                        |                                                     |
|      |                    | MASK5     | [5]   | RW   | 0       | Masks off Side-band<br>Disable for CLK5                                                        |                                                     |
| 8    | SBI_MASK_0         | RESERVED  | [4]   | RW   | 0       |                                                                                                | 0 = SBI may<br>disable the output<br>1 = SBI cannot |
|      |                    | RESERVED  | [3]   | RW   | 0       |                                                                                                | disable the output                                  |
|      |                    | RESERVED  | [2]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | RESERVED  | [1]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | RESERVED  | [0]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | RESERVED  | [7]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | RESERVED  | [6]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | MASK13    | [5]   | RW   | 0       | Masks off Side-band<br>Disable for CLK13                                                       |                                                     |
| 9    | SBI_MASK_1         | MASK12    | [4]   | RW   | 0       | Masks off Side-band<br>Disable for CLK12                                                       | 0 = SBI may<br>disable the output                   |
|      |                    | MASK11    | [3]   | RW   | 0       | Masks off Side-band<br>Disable for CLK11                                                       | 1 = SBI cannot<br>disable the output                |
|      |                    | MASK10    | [2]   | RW   | 0       | Masks off Side-band<br>Disable for CLK10                                                       |                                                     |
|      |                    | RESERVED  | [1]   | RW   | 0       |                                                                                                |                                                     |
|      |                    | MASK8     | [0]   | RW   | 0       | Masks off Side-band<br>Disable for CLK8                                                        |                                                     |



### Table 22. RS2CB19008A SMBus Registers (Cont.)

| Byte       | Register               | Name           | Bit   | Туре | Default | Description                                                                       | Definition                                                        |
|------------|------------------------|----------------|-------|------|---------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|
|            |                        | RESERVED       | [7:4] | RW   | 0       |                                                                                   | -                                                                 |
|            |                        | RESERVED       | [3]   | RW   | 0       |                                                                                   |                                                                   |
| 10         | SBI_MASK_2             | RESERVED       | [2]   | RW   | 0       |                                                                                   | 0 = SBI may<br>disable the output<br>1 = SBI cannot               |
|            |                        | RESERVED       | [1]   | RW   | 0       |                                                                                   | disable the output                                                |
|            |                        | RESERVED       | [0]   | RW   | 0       |                                                                                   |                                                                   |
|            |                        | CLK7_SLEWRATE  | [7]   | RW   | 1       | CLK7 Slewrate Control                                                             |                                                                   |
|            |                        | CLK6_SLEWRATE  | [6]   | RW   | 1       | CLK6 Slewrate Control                                                             |                                                                   |
|            |                        | CLK5_SLEWRATE  | [5]   | RW   | 1       | CLK5 Slewrate Control                                                             |                                                                   |
| 11         | OUTPUT_SLEW_           | RESERVED       | [4]   | RW   | 1       |                                                                                   | 0 = low slew rate 1                                               |
| 11         | RATE_0                 | RESERVED       | [3]   | RW   | 1       |                                                                                   | = high slew rate                                                  |
|            |                        | RESERVED       | [2]   | RW   | 1       |                                                                                   | -                                                                 |
|            |                        | RESERVED       | [1]   | RW   | 1       |                                                                                   |                                                                   |
|            |                        | RESERVED       | [0]   | RW   | 1       |                                                                                   |                                                                   |
|            |                        | RESERVED       | [7]   | RW   | 1       |                                                                                   | -                                                                 |
|            |                        | RESERVED       | [6]   | RW   | 1       |                                                                                   |                                                                   |
|            |                        | CLK13_SLEWRATE | [5]   | RW   | 1       | CLK13 Slewrate Control                                                            |                                                                   |
| 40         | OUTPUT_SLEW_           | CLK12_SLEWRATE | [4]   | RW   | 1       | CLK12 Slewrate Control                                                            | 0 = low slew rate 1                                               |
| 12         | RATE_1                 | CLK11_SLEWRATE | [3]   | RW   | 1       | CLK11 Slewrate Control                                                            | = high slew rate                                                  |
|            |                        | CLK10_SLEWRATE | [2]   | RW   | 1       | CLK10 Slewrate Control                                                            |                                                                   |
|            |                        | RESERVED       | [1]   | RW   | 1       |                                                                                   |                                                                   |
|            |                        | CLK8_SLEWRATE  | [0]   | RW   | 1       | CLK8 Slewrate Control                                                             |                                                                   |
|            |                        | RESERVED       | [7:4] | RW   | 0b111   | RESERVED                                                                          |                                                                   |
|            |                        | RESERVED       | [3]   | RW   | 1       |                                                                                   |                                                                   |
| 13         | OUTPUT_SLEW_<br>RATE_2 | RESERVED       | [2]   | RW   | 1       |                                                                                   | <ul> <li>0 = low slew rate 1</li> <li>= high slew rate</li> </ul> |
|            |                        | RESERVED       | [1]   | RW   | 1       |                                                                                   |                                                                   |
|            |                        | RESERVED       | [0]   | RW   | 1       |                                                                                   | _                                                                 |
| 14 -<br>19 | RESERVED               | -              | -     | -    | -       | RESERVED                                                                          | -                                                                 |
| 20         | LPHCSL_AMP_CTRL        | AMP            | [7:4] | RW   | 0x7     | Global Differential output<br>Control<br>0.625V~1V<br>25mV/step Default =<br>0.8V | -                                                                 |
|            |                        | RESERVED       | [3:0] | RW   | 0x7     | RESERVED                                                                          | -                                                                 |



Byte Register Name Bit Туре Default Description Definition 0 = DC coupled Enable receiver bias input AC\_IN RW 0 [7] when CLKIN is AC 1 = AC coupledcoupled, input 0 = input termination R is disabled Enable termination Rx\_TERM [6] RW 0 resistors on CLKIN 1 = inputtermination R is enabled RESERVED [5:4] 1'b11 \_ -21 PD\_RESTORE\_LOSb 0 = Config Cleared Save Configuration in PD\_RESTOREb RW [3] 1 Power Down 1 = Config Saved 0 = disable SDATA time out SDATA\_TIMEOUT\_E Enable SMB SDATA time RW [2] 1 Ν out monitoring 1 = enable SDATA time out RESERVED RO 1'bX [1] -0 = LOS event detected real time read back of LOSb\_RB [0] RO 1'bX loss detect block output 1 = NO LOS event detected. 22-32 RESERVED RESERVED [7:0] RW 0xXX RESERVED Readback of Side-band SBI\_CLK7 [7] RO 1'bX Disable for CLK7 Readback of Side-band SBI\_CLK6 [6] RO 1'bX Disable for CLK6 Readback of Side-band SBI\_CLK5 RO 1'bX [5] Disable for CLK5 RESERVED RO 1'bX [4] SBI\_READBACK\_0<sup>[1]</sup> 0 = bit low33 1 = bit highRESERVED [3] RO 1'bX RESERVED RO 1'bX [2] RESERVED [1] RO 1'bX RESERVED [0] RO 1'bX

### Table 22. RS2CB19008A SMBus Registers (Cont.)



Table 22. RS2CB19008A SMBus Registers (Cont.)

| Byte  | Register                          | Name            | Bit   | Туре | Default   | Description                                                                                                                                                                 | Definition                                                                                                             |
|-------|-----------------------------------|-----------------|-------|------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|       |                                   | RESERVED        | [7]   | RO   | 1'bX      |                                                                                                                                                                             |                                                                                                                        |
|       |                                   | RESERVED        | [6]   | RO   | 1'bX      |                                                                                                                                                                             |                                                                                                                        |
|       |                                   | SBI_CLK13       | [5]   | RO   | 1'bX      | Readback of Side-band<br>Disable for CLK13                                                                                                                                  |                                                                                                                        |
| 34    | SBI_READBACK_1 <sup>[1]</sup>     | SBI_CLK12       | [4]   | RO   | 1'bX      | Readback of Side-band<br>Disable for CLK12                                                                                                                                  | 0 = bit low                                                                                                            |
| 54    |                                   | SBI_CLK11       | [3]   | RO   | 1'bX      | Readback of Side-band<br>Disable for CLK11                                                                                                                                  | 1 = bit high                                                                                                           |
|       |                                   | SBI_CLK10       | [2]   | RO   | 1'bX      | Readback of Side-band<br>Disable for CLK10                                                                                                                                  |                                                                                                                        |
|       |                                   | RESERVED        | [1]   | RO   | 1'bX      |                                                                                                                                                                             | -                                                                                                                      |
|       |                                   | SBI_CLK8        | [0]   | RO   | 1'bX      | Readback of Side-band<br>Disable for CLK8                                                                                                                                   | -                                                                                                                      |
|       |                                   | RESERVED        | [7:4] | RO   | 1'bXXX    |                                                                                                                                                                             |                                                                                                                        |
|       |                                   | RESERVED        | [3]   | RO   | 1'bX      |                                                                                                                                                                             |                                                                                                                        |
| 35    | SBI_READBACK_2 <sup>[1]</sup>     | RESERVED        | [2]   | RO   | 1'bX      |                                                                                                                                                                             | 0 = bit low<br>1 = bit high                                                                                            |
|       |                                   | RESERVED        | [1]   | RO   | 1'bX      |                                                                                                                                                                             |                                                                                                                        |
|       |                                   | RESERVED        | [0]   | RO   | 1'bX      |                                                                                                                                                                             |                                                                                                                        |
| 36-37 | RESERVED                          | RESERVED        | [7:0] | RW   | 0xXX      |                                                                                                                                                                             |                                                                                                                        |
|       |                                   | RESERVED        | [7:1] | RW   | 0x0       |                                                                                                                                                                             | -                                                                                                                      |
| 38    | WRITE_LOCK_NCLEAR                 | WRITE_LOCK      | [0]   | RW   | 0         | Non-clearable SMBus<br>Write Lock bit. When<br>written to one, the SMBus<br>control registers cannot be<br>written to. This bit can only<br>be cleared by cycling<br>power. | 0 = SMBus not<br>locked for writing<br>by this bit. See<br>WRITE_LOCK_R<br>W1C bit.<br>1 = SMBus locked<br>for writing |
|       |                                   | RESERVED        | [7:2] | RW1C | 1'b111000 | -                                                                                                                                                                           | -                                                                                                                      |
|       | WRITE_LOCK_CLEAR_<br>39 LOS_EVENT | LOS_EVT         | [1]   | RW1C | 0         | LOS Event Status<br>When high, indicates that<br>a LOS event was<br>detected. Can be cleared<br>by writing a 1 to it.                                                       | 0 = No LOS event<br>detected<br>1 = LOS event<br>detected.                                                             |
| 39    |                                   | WRITE_LOCK_RW1C | [0]   | RW1C | 0         | Clearable SMBus Write<br>Lock bit.<br>When written to one, the<br>SMBus control registers<br>cannot be written to. This<br>bit can be cleared by<br>writing a 1 to it.      | 0 = SMBus not<br>locked for writing<br>by this bit. See<br>WRITE_LOCK bit.<br>1 = SMBus locked<br>for writing          |

1. Register only valid when the Side-Band Interface is enabled (SBI\_ENQ = 1).



## 5. Applications Information

## 5.1 Inputs, Outputs, and Output Control

### 5.1.1 Recommendations for Unused Inputs and Outputs

#### 5.1.1.1 Unused Differential CLKIN Inputs

For RS2CB19008A multiplexers that use only one input clock, the unused input can be left open. It is recommended that no trace be attached to unused CLKIN pins.

#### 5.1.1.2 Unused Control Inputs

The control pins have internal pull-up or internal pull-down resistors and do not require external resistors. They can be left floating if the default pin state is the desired state. If external resistors are needed to change the pin state or are desired for design robustness, 10kohm is the recommended value.

#### 5.1.1.3 Unused Differential CLK Outputs

All unused CLK outputs can be left floating. RSM recommends that no trace be attached to unused CLK outputs. While not required (but is highly recommended), the best design practice is to disable unused CLK outputs.

#### 5.1.1.4 Unused SMBus Clock and Data Pins

If the SMBus interface is not used, the clock and data pins must be pulled high with an external resistor. If the interface may be used for debug, separate resistors should be used. 10kohm is the recommended value.

### 5.1.2 Differential CLKIN Configurations

The RS2CB19008A clock input supports four configurations:

- Direct connection to HCSL-level inputs
- Direct connection to LVDS-level inputs with external termination resistor
- Internal self-bias circuit for applications that *externally* AC-couple the input clock
  - This feature is enabled by the **AC\_IN** bit.
- Internal pull-down resistors (Rp) to terminate the clock input at the receiver.
  - This feature is enabled by the **Rx\_TERM** bit.

Devices with multiple input clocks have individual AC\_IN and Rx\_TERM configuration bits for each input. The internal input clock terminations prevent reflections and are useful for non-PCIe applications, where the frequency and transmission line length vary from the 100MHz PCIe standard.

Figure 8 through Figure 11 illustrate the above items.

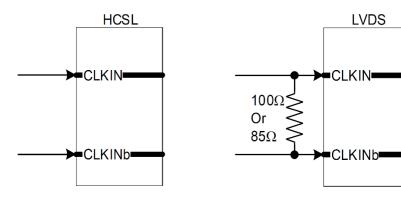



Figure 8. HCSL Input Levels (PCI-e Standard)

Figure 9. LVDS Input Levels



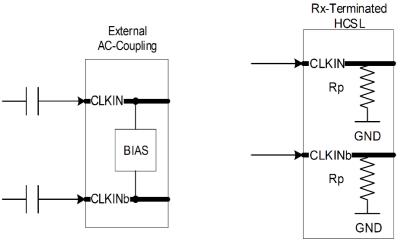



Figure 10. External AC-Coupling

Figure 11. Receiver Termination

### 5.1.3 Differential CLK Output Configurations

### 5.1.3.1 Direct-Coupled HCSL Loads

The RS2CB19008A LP-HCSL clock outputs have internal source terminations and directly drive industrystandard HCSL-level inputs with no external components. They support both 85ohm and 100ohm differential impedances. The clock outputs can also drive receiver-terminated HCSL loads. The combination of source termination and receiver termination results in a double-terminated load. When double-terminated, the clock output swing will be half of the source-terminated values.

### 5.1.3.2 AC-Coupled non-HCSL Loads

The RS2CB19008A clock output can directly drive AC-coupling capacitors without any termination components. The clock input side of the AC-coupling capacitor may require an input-dependent bias network (BN). For examples of terminating the RS2CB19008A clock outputs to other logic families such as LVDS, LVPECL, or CML.

Figure 12 to Figure 14 show the various clock output configurations.

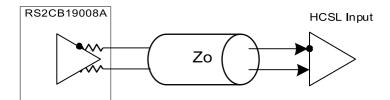
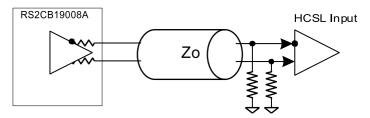
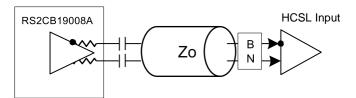
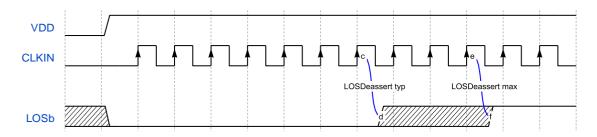





Figure 12. Direct-Coupled Source-Terminated HCSL










BN = Input-dependent bias network

Figure 14. AC-Coupled

## 5.2 Loss of Signal and Automatic Clock Parking

The RS2CB19008A have a Loss of Signal (LOS) circuit to detect the presence or absence of an input clock. The LOS circuit drives the open-drain LOSb pin (the "b" suffix indicates "bar", or active-low) and sets the LOS\_EVT bit in the SMBus register space.



#### Figure 15. LOSb De-assert Timing RS2CB19008A Devices

*Note:* The LOSb pin monitors the *selected input clock* in the RS2CB19008A multiplexers.

The following diagram shows the LOSb assertion sequence when the CLKIN is lost. It also shows the Automatic Clock Parking (ACP) circuit bring the inputs to a Low/Low state after an LOS event. For exact timing, see Electrical Characteristics.

## 5.3 Output Enable Control

The RS2CB19008A provides three mechanisms to enable or disable clock outputs. All three mechanisms start and stop the output clocks in a synchronous, glitch-free manner. A clock output is enabled only when all three mechanisms indicate "enabled." The following sections describe the three mechanisms.

### 5.3.1 SMBus Output Enable Bits

The RS2CB19008A has a traditional SMBus output enable bit for each output. The power-up default is 1, or enabled. Changing this bit to a 0 disables the output to a low/low state. The transitions between the enable and disable states are glitch-free in both directions.

*Note:* The glitch-free synchronization logic requires the CLKIN be running to enable or disable the outputs with this mechanism.

## 5.3.2 Output Enable (OEb) Pins

If the OEb pin is low the controlled output is enabled. If the OEb pin is high, the controlled output is disabled to a low/low state. All OEb pins enable and disable the controlled outputs in a glitch-free, synchronous manner. Note: The glitch-free synchronization logic requires the CLKIN be running to enable or disable the outputs with this mechanism.

The RS2CB19008A each have 7 OEb pins. Some of the pins are muxed with SBI functions.Details are provided in Table 23.

| Pin Name       | SBI_ENQ Pin  | Default Pin<br>Function |
|----------------|--------------|-------------------------|
| OEb12          | Х            | CLK12 OEb               |
| OEb11          | Х            | CLK11 OEb               |
| OEb10_SHFT_LDb | 0 (Disabled) | CLK10 OEb               |
|                | 1 (Enabled)  | SHFT_LDb                |
| OEb8           | Х            | CLK8 OEb                |
| OEb7           | Х            | CLK7 OEb                |
|                | 0 (Disabled) | CLK6 OEb                |
| OEb6_SBI_CLK   | 1 (Enabled)  | SBI_CLK                 |
| OENE ORI IN    | 0 (Disabled) | CLK5 OEb                |
| OEb5_SBI_IN    | 1 (Enabled)  | SBI_IN                  |

### Table 23. RS2CB19008A OEb Mapping

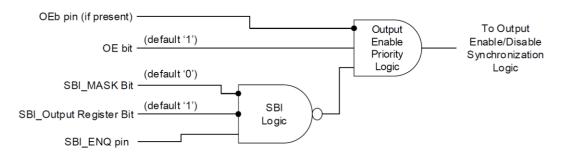
### 5.3.3 Side-Band Interface (SBI)

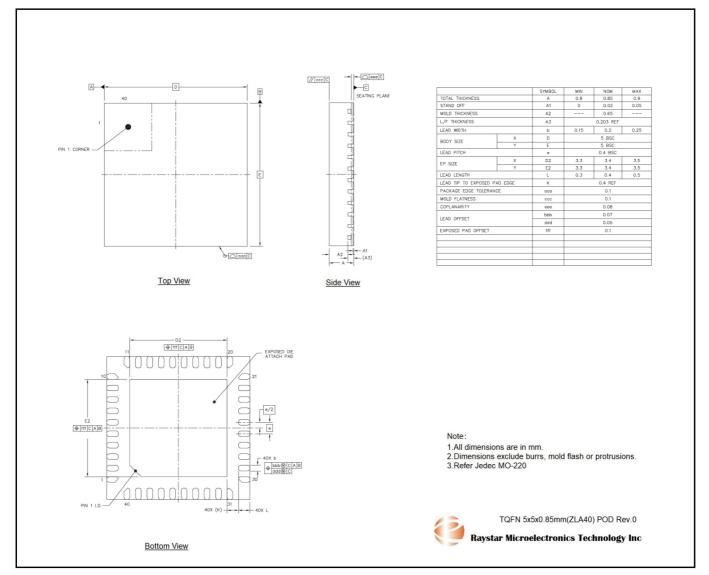
SBI function and Connection Topologies refer to RS2CB190xx Series Datasheet.

The RS2CB19008A support two SBI connection topologies: Star and Daisy-chain.

### 5.3.4 Output Enable/Disable Priority

The RS2CB19008A output enable/disable priority is an "AND" function of all enable methods. This means that the SMBus output enable bit AND the OEb pin (if present/assigned) AND the SBI must indicate that the output is enabled in order for the output to be enabled. A logical representation of the priority logic is shown in Figure 16.





Figure 16. Output Enable/Disable Priority (Logical)



## 6. Package Information

The package outline drawings are located at the end of this document and are accessible from the website. The package information is the most current data available and is subject to change without revision of this document.

### TQFN 5x5X0.85-40L





# 7. Revision History

| Revision | Description              | Date       |
|----------|--------------------------|------------|
| V0.9     | Preliminary release      | 2024/11/13 |
| V1.0     | Initial release          | 2024/11/15 |
| V1.1     | Modify Pin18 CLK to CLK6 | 2024/12/09 |