

Features

- Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal
- Clock operating voltage: 1.1 V to 5.5 V
- Low current; typical 0.3 μA at VDD = 3.3 V and Tamb = 25 °C
- 400 kHz two-line IIC-bus interface (at VDD = 1.8 V to 5.5 V)
- Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz)
- Selectable integrated oscillator load capacitors for C_L = 7 pF or C_L = 12.5pF
- Alarm function
- Countdown timer
- Minute and half minute interrupt
- Oscillator stop detection function
- Internal Power-On Reset (POR)
- Programmable offset register for frequency adjustment

Applications

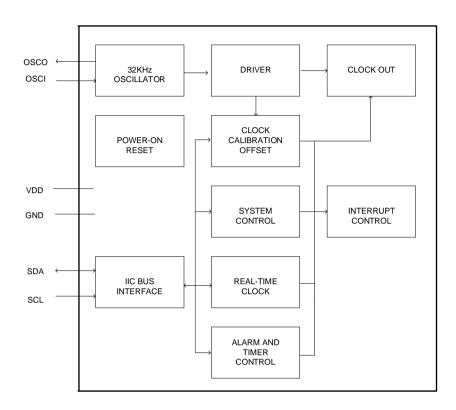
- Digital still camera
- Digital video camera
- Printers
- Copy machines
- Mobile equipment
- Battery powered devices

Description

The RS4C85063 is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine-tuning of the clock. All addresses and data are transferred serially via the two-line bidirectional I2C-bus. Maximum data rate is 400 kbit/s. The register address is incremented automatically after each written or read data byte.

Ordering Information

Ordering Code	Package	Package Description
RS4C85063ATWE	SOP8	Pitch 1.27mm
RS4C85063ATUE	MSOP8	Pitch 0.65mm
RS4C85063ATZEE	TDFN8	Pitch 0.5mm
RS4C85063ATLZZE	TDFN 2.6x2.6-10L	Pitch 0.5mm
RS4C85063BTWE	SOP8	Pitch 1.27mm
RS4C85063BTUE	MSOP8	Pitch 0.65mm
RS4C85063BTZEE	TDFN8	Pitch 0.5mm
RS4C85063BTLZZE	TDFN 2.6x2.6-10L	Pitch 0.5mm


Note:

1

E= Green Package

RSM-DS-R-0073

Function Block

Figure1 Function block

Typical Application Circuit

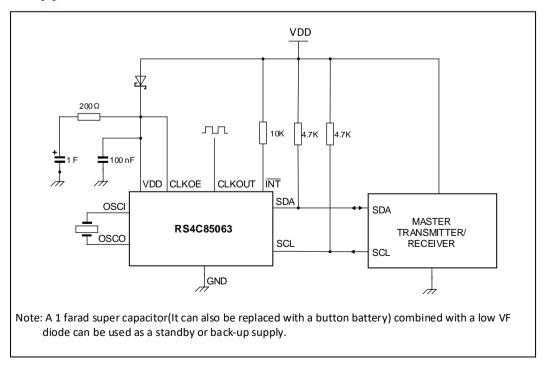


Figure 2 Typical application circuit

Pin Configuration

Figure3 Pin configuration

Pin Description

Pin N	Pin Number		Туре	Description
PIN8	PIN10	Pin Name	Турс	Безоприон
1	1	OSCI	I	oscillator input
2	2	osco	0	oscillator output
	3	CLKOE ^[1]	1	CLKOUT enable or disable pin; enable is active HIGH
3	4	/INT ^[1]	0	interrupt output (open-drain)
4	5	GND	Р	ground supply voltage
5	6	SDA ^[1]	I/O	serial data line
6	7	SCL ^[1]	1	serial clock input
-	8	NC	/	not connected
7	9	CLKOUT	0	clock output (push-pull)
8	10	VDD	Р	supply voltage

Function Description

The RS4C85063 contains 18 8-bit registers with an auto-incrementing register address, an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which provides the source clock for the Real-Time Clock (RTC) and calender, and an I2C-bus interface with a maximum data rate of 400 kbit/s. The built-in address register will increment automatically after each read or write of a data byte up to the register 11h. After register 11h, the auto-incrementing will wrap around to address 00h.

All registers are designed as addressable 8-bit parallel registers although not all bits are implemented. The first two registers (memory address 00h and 01h) are used as control and status register. The register at address 02h is an offset register allowing the fine-tuning of the clock; and at 03h is a free RAM byte. The addresses 04h through 0Ah are used as counters for the clock function (seconds up to years counters). Address locations 0Bh through 0Fh contain alarm registers which define the conditions for an alarm. The registers at 10h and 11h and 12h are for the timer function.

The Seconds, Minutes, Hours, Days, Months, and Years as well as the corresponding alarm registers are all coded in Binary Coded Decimal (BCD) format. When one of the RTC registers is written or read, the contents of all time counters are frozen. Therefore, faulty writing or reading of the clock and calendar during a carry condition is prevented. For details on maximum access time.

Registers Table

Addr.	Function (time	Register definition								
(hex)	range BCD format)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Control	and status registers	,		•						
00	Control_1	EXT_TEST	-	STOP	SR	-	CIE	12_24	CAP_SEI	
01	Control_2	AIE	AF	MI	НМІ	TF		COF[2:	:0]	
02	Offset	MODE				OFFSET	[6:0]			
03	RAM_byte				В [7	7:0]				
Time and	d date registers	1								
04	Seconds	os			SE	CONDS	(0 to 59)			
05	Minutes	-			MI	INUTES	(0 to 59)			
06	Hours	_	-	AMPM		HOUR	S (1 to 12	2) in 12-hour	mode	
	1100.0				НО	URS (0 t	o 23) in 2	4-hour mode	Э	
07	Days	-	-			DA	YS (1 to	31)		
08	Weekdays	-	-	-	1	-	,	WEEKDAYS	(0 to 6)	
09	Months	-	-	-			MONTH	S (1 to 12)		
0A	Years				YEARS	(0 to 99)				
Alarm re	gister	•								
0B	Second_alarm	AEN_S			SECO	ND _ALA	RM (0 to	59)		
0C	Minute_alarm	AEN_M			MINU [*]	TE _ALA	RM (0 to	59		
0D	Hour_alarm	AEN_H	-	AMPM			•	o 12) in 12-h		
					HOUR_			in 24-hour n	node	
0E	Day_alarm	AEN_D	- DAY_ALARM (1 to 31)							
0F	Weekday_alarm	AEN_W	V WEEKDAY_ALARM(0 to 6)							
Timer re	gisters									
10	Timer_value		T [7:0]							
11	Timer_mode	-	TCF [1:0] TE TIE TI_TP							
12	Timer_value			T [15:8	Only fo	or RS4C8	5063B)			
	•	l .								

Control and status register

To ensure that all control registers will be set to their default values, the VDD level must be at zero volts at initial power-up. If this is not possible, a reset must be initiated with the software reset command when power is stable.

Control_1 Register(0X00)

Bit	Symbol	W/R	Default value	Description
7	EXT_TEST	RW	0	external clock test mode 0 = normal mode 1 = external clock test mode
6	-	RO	0	unused
5	STOP	RO	0	STOP bit 0 = RTC clock runs 1 = RTC clock is stopped; all RTC divider chain flip-flops are asynchronously set logic 0
4	SR	RW	0	software reset 0 = no software reset 1 = initiate software reset[1]; this bit always returns a 0 when read
3	-	RO	0	unused
2	CIE	RW	0	correction interrupt enable 0 = no correction interrupt generated 1 = interrupt pulses are generated at every correction cycle
1	12_24	RW	0	12 or 24-hour mode 0 = 24-hour mode is selected 1 = 12-hour mode is selected
0	CAP_SEL	RW	0	 internal oscillator capacitor selection for quartz crystals with a corresponding load capacitance 0 = 7 pF 1 = 12.5 pF

Note:

[1] For a software reset, 01011000 (58h) must be sent to register Control_1

External clock test mode

A test mode is available which allows for on-board testing. In this mode, it is possible to set up test conditions and control the operation of the RTC.

The test mode is entered by setting bit EXT_TEST in register Control_1. Then pin CLKOUT becomes an input. The test mode replaces the internal clock signal with the signal applied to pin CLKOUT.

The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided down to 1 Hz by a 26 divide chain called a prescaler. The prescaler can be set into a known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0. (STOP must be cleared before the prescaler can operate again.)

From a stop condition, the first 1 second increment will take place after 32 positive edges on pin CLKOUT. Thereafter, every 64 positive edges cause a 1 second increment.

Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When entering the test mode, no assumption as to the state of the prescaler can be made.

Operation example:

- 1. Set EXT_TEST test mode (register Control_1, bit EXT_TEST = 1).
- 2. Set STOP (register Control_1, bit STOP = 1).
- 3. Clear STOP (register Control_1, bit STOP = 0).
- 4. Set time registers to desired value.
- 5. Apply 32 clock pulses to pin CLKOUT.
- 6. Read time registers to see the first change.
- 7. Apply 64 clock pulses to pin CLKOUT.
- 8. Read time registers to see the second change.

Repeat 7 and 8 for additional increments.

STOP bit function

The function of the STOP bit is to allow for accurate starting of the time circuits. The STOP bit function causes the upper part of the prescaler (F2 to F14) to be held in reset and thus no 1 Hz ticks are generated. It also stops the output of clock frequencies below 8 kHz on pin CLKOUT.

Bit	Prescaler bits		Time						
STOP	F0F1-F2 to F14	[1] 1 Hz tick	hh:mm:ss	Comment					
Clock is	Clock is running normally								
0	01-0 0001 1101 0100		12:45:12	prescaler counting normally					
STOP bit	t is activated by user. F ₀ F ₁	are not reset and values car	nnot be predicted	d externally					
1	XX-0 0000 0000 0000		12:45:12	prescaler is reset; time circuits are frozen					
New time	e is set by user								
1	XX-0 0000 0000 0000		08:00:00	prescaler is reset; time circuits are frozen					
STOP bit	is released by user								
0	XX-0 0000 0000 0000	1 1	08:00:00	prescaler is now running					
	XX-1 0000 0000 0000		08:00:00						
	XX-0 1000 0000 0000	0.507813	08:00:00						
	XX-1 1000 0000 0000	to 0.507935 s	08:00:00						
	:	5.557.555.5	:						
	11-1 1111 1111 1110	1 1	08:00:00						
	00-0 0000 0000 0001	† 7	08:00:01	0 to 1 transition of F14 increments the time					
				circuits					
	10-0 0000 0000 0001		08:00:01						
	:	1.000000 s	:						
	11-1 1111 1111 1111	1.000000 s	08:00:01						
	00-0 0000 0000 0000		08:00:01						
	10-0 0000 0000 0000	4	08:00:01						
	:		:						
	11-1 1111 1111 1110	<u> </u>	08:00:01						
	00-0 0000 0000 0001		08:00:02	0 to 1 transition of F ₁₄ increments the time					
		•		circuits					

Note:

[1] F₀ is clocked at 32.768 kHz.

The lower two stages of the prescaler (F_0 and F_1) are not reset. And because the I2C-bus is asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is between zero and one 8.192 kHz cycle.

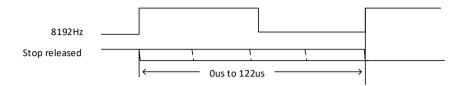


Figure 4 STOP bit release timing

The first increment of the time circuits is between 0.507813 s and 0.507935 s after STOP bit is released. The uncertainty is caused by the prescaler bits F0 and F1 not being reset and the unknown state of the 32 kHz clock.

Software reset

A reset is automatically generated at power-on. There is a low probability that some devices will have corruption of the registers after the automatic power-on reset if the device is powered up with a residual VDD level. It is required that the VDD starts at zero volts at power up or upon power cycling to ensure that there is no corruption of the registers. If this is not possible, a reset must be initiated after power-up (i.e. when power is stable) with the software reset command. Software reset command is setting Control_1 (00h) to 01011000 (58h)

In reset state, registers are set according to Table and the address pointer returns to address 00h.

A -1 -1	Deviates	Bit								
Address	Register name	7	6	5	4	3	2	1	0	
00h	Control_1	0	0	0	0	0	0	0	0	
01h	Control_2	0	0	0	0	0	0	0	0	
02h	Offset	0	0	0	0	0	0	0	0	
03h	RAM_byte	0	0	0	0	0	0	0	0	
0Bh	Second_alarm	1	0	0	0	0	0	0	0	
0Ch	Minute_alarm	1	0	0	0	0	0	0	0	
0Dh	Hour_alarm	1	0	0	0	0	0	0	0	
0Eh	Day_alarm	1	0	0	0	0	0	0	0	
0Fh	Weekday_alarm	1	0	0	0	0	0	0	0	
10h	Timer_value	0	0	0	0	0	0	0	0	
11h	Timer_mode	0	0	0	1	1	0	0	0	

Control_2 Register(0x01)

Bit	Symbol	Default Value	Description
			alarm interrupt
7	AIE	0	0 = Disabled
			1 = Enabled
			alarm flag
			0 = read: alarm flag inactive
6	AF	0	0 = write: alarm flag is cleared
			1= read: alarm flag active
			1= write: alarm flag remains unchanged
			minute interrupt
5	MI	0	0=Disabled
			1=Enabled
			half minute interrupt
4	HMI	0	0=Disabled
			1=Enabled
			timer flag
3	TF	0	0=no timer interrupt generated
			1=flag set when timer interrupt generated
2 to 0	COF [2:0]	000	CLKOUT control

Note:

[1] For a software reset, 01011000 (58h) must be sent to register Control_1

AIE: This bit activates or deactivates the generation of an interrupt when AF is asserted, respectively.

AF: When an alarm occurs, AF is set logic 1. This bit maintains its value until overwritten by command. To prevent one flag being overwritten while clearing another, a logic AND is performed during a write access.

MI and HMI: minute and half minute interrupt

The minute interrupt (bit MI) and half minute interrupt (bit HMI) are pre-defined timers for generating interrupt pulses on pin INT; The timers are running in sync with the seconds counter.

The minute and half minute interrupts must only be used when the frequency offset is set to normal mode (MODE = 0), In normal mode, the interrupt pulses on pin INT are 1/64 s wide.

When starting MI, the first interrupt will be generated after 1 second to 59 seconds. When starting HMI, the first interrupt will be generated after 1 second to 29 seconds.

Subsequent periods do not have such a delay. The timers can be enabled independently from one another. However, a minute interrupt enabled on top of a half minute interrupt is not distinguishable.

Effect of bits MI and HMI on INT generation

Minute interrupt (bit MI)	Half minute interrupt (bit HMI)	Result	
0	0	no interrupt generated	
1	0	an interrupt every minute	
0	1	an interrupt every 30 s	
1	1	an interrupt every 30 s	

The duration of the timer is affected by the register Offset. Only when OFFSET[6:0] has the value 00h the periods are consistent.

Timer flag

The timer flag (bit TF) is set logic 1 on the first trigger of MI, HMI, or the countdown timer. The purpose of the flag is to allow the controlling system to interrogate what caused the interrupt: timer or alarm. The flag can be read and cleared by command.

The status of the timer flag TF can affect the INT pulse generation depending on the setting of TI_TP

When TI_TP is set logic 1.

An INT pulse is generated independent of the status of the timer flag TF.

TF stays set until it is cleared.

TF does not affect INT.

Tiny Real-Time Clock/calendar with alarm function and I2C-bus.

The countdown timer runs in a repetitive loop and keeps generating timed periods.

When TI_TP is set logic 0

The INT generation follows the TF flag.

TF stays set until it is cleared.

If TF is not cleared before the next coming interrupt, no INT is generated.

The countdown timer stops after the first countdown.

COF[2:0]: Clock output frequency

A programmable square wave is available at pin CLKOUT. Operation is controlled by the COF[2:0] bits in the register Control_2. Frequencies of 32.768 kHz (default) down to 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the oscillator.

Pin CLKOUT is a push-pull output and enabled at power-on. CLKOUT can be disabled by setting COF[2:0] to 111 or by setting CLKOE LOW (RS4C85063ATL only). When disabled, the CLKOUT is LOW. If CLKOE is HIGH and COF[2:0]=111 there will be no clock and CLKOUT will be LOW.

The duty cycle of the selected clock is not controlled. However, due to the nature of the clock generation, all clock frequencies except 32.768 kHz have a duty cycle of 50: 50.

The STOP bit function can also affect the CLKOUT signal, depending on the selected frequency. When the STOP bit is set logic 1, the CLKOUT pin generates a continuous LOW for those frequencies that can be stopped

COF[2:0]	CLKOUT frequency (Hz)	Typical duty cycle ^[1]	Effect of STOP bit
000[2]	32768	60 : 40 to 40 : 60	no effect
001	16384	50 : 50	no effect
010	8192	50 : 50	no effect
011	4096	50 : 50	CLKOUT = LOW
100	2048	50 : 50	CLKOUT = LOW

101	1024	50 : 50	CLKOUT = LOW
110	1[3]	50 : 50	CLKOUT = LOW
111	CLKOUT = LOW	-	-

Note:

- [1] Duty cycle definition: % HIGH-level time: % LOW-level time.
- [2] Default values: The duty cycle of the CLKOUT when outputting 32,768 Hz could change from 60:40 to 40:60 depending on the detector since the 32,768 Hz is derived from the oscillator output which is not perfect. It could change from device to device and it depends on the silicon diffusion. There is nothing that can be done from outside the chip to influence the duty cycle.

 [3] 1 Hz clock pulses are affected by offset correction pulses.

Offset (0X02)

The RS4C85063 incorporates an offset register (address 02h) which can be used to implement several functions, such as:

- Accuracy tuning
- Aging adjustment
- Temperature compensation

Bit	Symbol	Default value	Description
7	MODE	0	offset mode 0=normal mode: offset is made once every two hours 1=course mode: offset is made every 4 minutes
6 to 0	OFFSET [6:0]		offset value

For MODE = 0, each LSB introduces an offset of 4.34 ppm. For MODE = 1, each LSB introduces an offset of 4.069 ppm. The offset value is coded in two's complement giving a range of +63 LSB to -64 LSB.

OFFEET (C-0)	Offset value in	Offset valu	e in ppm	
OFFSET [6:0]	decimal	Normal mode MODE = 0	Fast mode MODE = 1	
0111111	+63	+273.420	+256.347	
0111110	+62	+269.080	+252.278	
:	:	:	:	
0000010	+2	+8.680	+8.138	
0000001	+1	+4.340	+4.069	
0000000 ^[1]	0	0 ^[1]	0 ^[1]	
1111111	-1	-4.340	-4.069	
1111110	-2	-8.680	-8.138	
:	:	:	:	
1000001	-63	-273.420	-256.347	
1000000	-64	-277.760	-260.416	

11

Note:

[1] Default value.

The correction is made by adding or subtracting clock correction pulses, thereby changing the period of a single second but not by changing the oscillator frequency.

It is possible to monitor when correction pulses are applied. To enable correction interrupt generation, bit CIE (register Control_1) has to be set logic 1. At every correction cycle, a pulse is generated on pin INT. The pulse width depends on the correction mode. If multiple correction pulses are applied, an interrupt pulse is generated for each correction pulse applied.

Correction when MODE = 0

The correction is triggered once every two hours and then correction pulses are applied once per minute until the programmed correction values have been implemented.

Correction value	Update every nth hour	Minute	Correction pulses on INT per minute ^[1]
+1 or -1	2	00	1
+2 or -2	2	00 and 01	1
+3 or -3	2	00, 01, and 02	1
:	:	:	:
+59 or -59	2	00 to 58	1
+60 or -60	2	00 to 59	1
+61 or -61	2	00 to 59	1
	2nd and next hour	00	1
+62 or -62	2	00 to 59	1
	2nd and next hour	00 and 01	1
+63 or -63	02	00 to 59	1
	2nd and next hour	00, 01, and 02	1
-64	02	00 to 59	1
	2nd and next hour	00, 01, 02, and 03	1

Note:

The correction pulses on pin INT are $^{1}\!\!/_{64}\,s$ wide.

In MODE = 0, any timer or clock output using a frequency below 64 Hz is affected by the clock correction

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	no effect
1	affected
1/60	affected

Correction when MODE = 1

The correction is triggered once every four minutes and then correction pulses are applied once per second up to a maximum of 60 pulses. When correction values greater than 60 pulses are used, additional correction pulses are made in the 59th second.

Clock correction is made more frequently in MODE = 1; however, this can result in higher power consumption.

Correction value	Update every nth minute	Second	Correction pulses on INT per second [1]
+1 or -1	2	00	1
+2 or -2	2	00 and 01	1
+3 or -3	2	00, 01, and 02	1
:	:	:	:
+59 or -59	2	00 to 58	1
+60 or -60	2	00 to 59	1
+61 or -61	2	00 to 58	1
	2	59	2
+62 or -62	2	00 to 58	1
	2	59	3
+63 or -63	2	00 to 58	1
	2	59	4
-64	2	00 to 58	1
	2	59	5

Note:

The correction pulses on pin INT are 1/1024 s wide. For multiple pulses, they are repeated at an interval of 1/512 s.

In MODE = 1, any timer source clock using a frequency below 1.024 kHz is also affected by the clock correction

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	affected
1	affected
1/60	affected

Offset calibration workflow

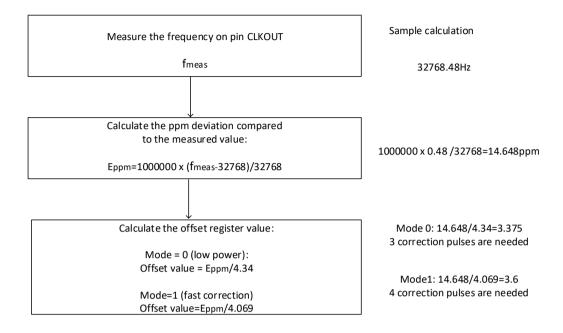


Figure 5 Offset calibration calculation workflow

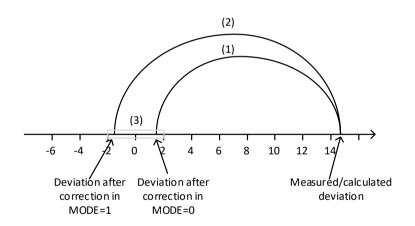


Figure6 Result of offset calibration

14

With the offset calibration an accuracy of ± 2 ppm (0.5 x offset per LSB) can be reached ± 1 ppm corresponds to a time deviation of 0.0864 seconds per day.

- (1) 3 correction pulses in MODE = 0 correspond to -13.02 ppm.
- (2) 4 correction pulses in MODE = 1 correspond to -16.276 ppm.
- (3) Reachable accuracy zone.

RAM_byte Register(0x03)

The RS4C85063 provides a free RAM byte, which can be used for any purpose, for example, status byte of the system.

Bit	Symbol	Value	Description
7 to 0	B[7:0]	00000000 ^[1] to	RAM content

Note:

[1] Default value.

Seconds Register(0x04)

Bit	Symbol	Value	Place value	Description
7	os	1 ^[1]	-	Oscillator flag 0=clock integrity is guaranteed 1=clock integrity is not guaranteed; oscillator has stopped or has been interrupted
6 to 4	SECONDS	0 ^[1] to 5	ten's place	actual seconds coded in BCD format
3 to 0	02001130	0 ^[1] to 9	unit place	

Note:

[1] Default value.

Minutes Register(0x05)

Bit	Symbol	Default Value	Place value	Description
7	-	0	-	unused
6 to4	MAINILITEC	0	ten's place	actual minutes coded in BCD
3 to 0	MINUTES	0	unit place	format

Hours Register(0x06)

Bit	Symbol	Default Value	Place value	Description		
7 to 6	-	00	-	unused		
		12-hour	mode ^[1]			
				AM/PM indicator		
5	AMPM	0		0=AM		
				1=PM		
4	HOURS	0	ten's place	actual hours in 12-hour mode		
3 to 0	HOURS	0	unit place	coded in BCD format		
	24-hour mode ^[1]					
5 to 4	HOURS	0	ten's place	actual hours in 24-hour mode		
3 to 0		0	unit place	coded in BCD format		

Note:

[1] Hour mode is set by the 12_24 bit in register Control_1

Days Register(0x07)

Bit	Symbol	Default Value	Place value	Description
7 to 6	-	00	-	unused
5 to 4	DAYS ^[1]	0	ten's place	and the DOD former
3 to 0	DAYS	0	unit place	actual day coded in BCD format

Notes:

[1] If the year counter contains a value, which is exactly divisible by 4 (including the year 00), the RS4C85063A compensates for leap years by adding a 29th day to February.

Weekdays Register(0x08)

Bit	Symbol	Value	Description	
7 to 3	-	00000	unused	
2 to 0	WEEKDAYS	0 to 6	actual weekday values	

_ [1]	Bit				
Day ^[1]	2	1	0		
Sunday	0	0	0		
Monday	0	0	1		
Tuesday	0	1	0		
Wednesday	0	1	1		
Thursday	1	0	0		
Friday	1	0	1		
Saturday ^[2]	1	1	0		

Notes:

[1] Definition may be reassigned by the user.

[2] Default value

Months Register(0x09)

Bit	Symbol	Value	Place value	Description
7 to 5	•	000	-	unused
4	MONITUO	0 to 1	ten's place	actual month coded in BCD
3 to 0	MONTHS	0 to 9	unit place	forma

Month	Upper-digit (ten's place)	Digit (unit place)			
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
January ^[1]	0	0	0	0	1
February	0	0	0	1	0
March	0	0	0	1	1
April	0	0	1	0	0
May	0	0	1	0	1
June	0	0	1	1	0

July	0	0	1	1	1
August	0	1	0	0	0
September	0	1	0	0	1
October	1	0	0	0	0
November	1	0	0	0	1
December	1	0	0	1	0

Note:

[1] Default value.

Years Register(0x0A)

Bit	Symbol	Value	Place value	Description
7 to 4	YEARS	0 ^[1] to 9	ten's place	and the BOD forward
3 to 0		0 ^[1] to 9	unit place	actual year coded in BCD format

Note:

[1] Default value.

Setting and reading the time

The data flow and data dependencies starting from the 1 Hz clock tick

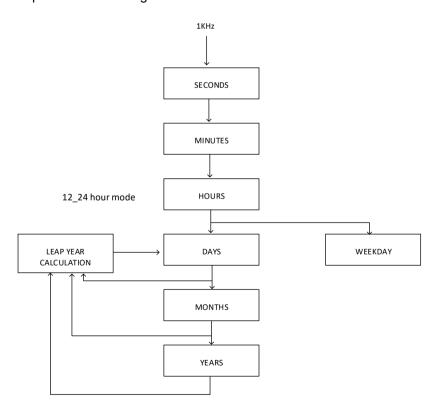


Figure 7 Data flow for the time function

After this read/write access is completed, the time circuit is released again and any pending request to increment the time counters that occurred during the read/write access is serviced. A maximum of 1 request can be stored; therefore, all accesses must be completed within 1 second

Setting or reading seconds through to years should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

Second_alarm Register(0x0B)

Bit	Symbol	Default Value	Place value	Description
7	AEN_S	1	_	second alarm 0=enabled 1=disabled
6 to 4	SECOND ALABM	0	ten's place	second alarm information
3 to 0	SECOND_ALARM	0		coded in BCD format

Minute_alarm Register(0x0C)

Bit	Symbol	Default Value	Place value	Description
7	AEN_M	1		minute alarm 0=enabled 1=disabled
6 to 4		0	ten's place	minute alarm information coded
3 to 0	MINUTE_ALARM	0		in BCD format

Note:

[1] Default value.

Hour_alarm Register(0x0D)

Bit	Symbol	Value	Place value	Description		
7	AEN_H	1 ^[1]		hour alarm 0=enabled 1=disabled		
6	-	O ^[1]	-	unused		
	12-hour mode $^{[2]}$					
5	АМРМ	0 ^[1]		AM/PM indicator 0=AM 1=PM		
4		0 ^[1] to 1	ten's place	hour alarm information in		
3 to 0	HOUR_ALARM	0 ^[1] to 9	unit place	12-hour mode coded in BCD format		
24-hour mode ^[2]						
5 to 4		0 ^[1] to 2	ten's place	hour alarm information in		
3 to 0	HOUR_ALARM	0 ^[1] to 9	unit place	24-hour mode coded in BCD format		

18

Note:

- [1] Default value.
- [2] Hour mode is set by the 12_24 bit in register Control_1

Day alarm Register(0x0E)

Bit	Symbol	Value	Place value	Description
				day alarm
7	AEN_D	1[^{1]}		0=enabled
				1=disabled
6	-	0	-	unused
5 to 4		0 ^[1] to 3	ten's place	day alarm information coded in
3 to 0	DAY_ALARM	0 ^[1] to 9	unit place	BCD format

Note:

[1] Default value.

Weekday_alarm Register(0x0F)

Bit	Symbol	Value	Description
7	AEN_W		weekday alarm 0=enabled 1=disabled
6 to 3	-	0	unused
2 to 0	WEEKDAY_ALARM	0 ^[1] to 6	weekday alarm information coded in BCD format

Note:

[1] Default value.

Alarm function

By clearing the alarm enable bit (AEN_x) of one or more of the alarm registers, the corresponding alarm condition(s) are active. When an alarm occurs, AF is set logic 1. The asserted AF can be used to generate an interrupt (INT). The AF is cleared by command.

The registers at addresses 0Bh through 0Fh contain alarm information. When one or more of these registers is loaded with second, minute, hour, day or weekday, and its corresponding AEN_x is logic 0, then that information is compared with the current second, minute, hour, day, and weekday. When all enabled comparisons first match, the alarm flag (AF in register Control_2) is set logic 1.

The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is enabled, the INT pin follows the condition of bit AF. AF remains set until cleared by command. Once AF has been cleared, it will only be set again when the time increments to match the alarm condition once more. Alarm registers which have their AEN_x bit at logic 1 are ignored.

Timer_value Register(0x10/0x12)

Bit	Symbol	Value	Description
7 to 0	T [7:0]	0h ^[1] to FFh	countdown timer value ^[2]
7 to 0	T [15:8]	1FFh to FFFFh	Only for RS4C85063B

Note:

[1] Default value.

[2] Countdown period in seconds: CountdownPeriod=T/SourceClockFrequency where T is the countdown value.

Timer_mode Register (0x11)

Bit	Symbol	Default Value	Description
7 to 5	-	000	unused
4 to 3	TCF[1:0]	11	timer clock frequency 00=4.096 kHz timer source clock 01=64 Hz timer source clock 10=1 Hz timer source clock 11=½00 Hz timer source clock
2	TE	0	timer enable 0=timer is disabled 1=timer is enabled
1	TIE		timer interrupt enable 0=no interrupt generated from timer 1=interrupt generated from timer
0	TI_TP	0	timer interrupt mode 0=interrupt follows timer flag 1=interrupt generates a pulse

Timer functions

The timer has four selectable source clocks allowing for countdown periods in the range from 244 ms to 4 hours 15 min(RS4C85063A) and form 244ms to 1092h(RS4C85063B).

RS4C85063A:

	ireauencv 	Delay			
TCF[1:0]			Maximum timer duration T= 255		
00	4.096 kHz	244 us	62.256 ms		
01	64 Hz	15.625 ms	3.984 s		
10	1 Hz ^[2]	1 s	255 s		
11	1/ ₆₀ Hz ^[2]	60 s	4 hours 15 min		

RS4C85063B:

	Timer source clock frequency ^[1]	Delay		
TCE[4.0]		Minimum timer duration T = 1	Maximum timer duration T = 65535	
00	4.096 kHz	244 us	15.9998s	
01	64 Hz	15.625 ms	1023.984s	
10	1 Hz ^[2]	1 s	65535 s	
11	1/ ₆₀ Hz ^[2]	60 s	65535min	

20

Note:

- [1] When not in use, TCF[1:0] must be set to 1/60 Hz for power saving.
- [2] Time periods can be affected by correction pulses.

Remark: Note that all timings which are generated from the 32.768 kHz oscillator are based on the assumption that there is 0 ppm deviation. Deviation in oscillator frequency results in deviation in timings. This is not applicable to interface timing.

When the counter decrements from 1, the timer flag (bit TF in register Control_2) is set and the counter automatically re-loads and starts the next timer period.

If a new value of T is written before the end of the current timer period, then this value takes immediate effect. Does not recommend changing T without first disabling the counter by setting bit TE logic 0. The update of T is asynchronous to the timer clock.

Therefore changing it without setting bit TE logic 0 may result in a corrupted value loaded into the countdown counter. This results in an undetermined countdown period for the first period. The countdown value T will, however, be correctly stored and correctly loaded on subsequent timer periods. When starting the timer for the first time, the first period has an uncertainty. The uncertainty is a result of the enable instruction being generated from the interface clock which is asynchronous from the timer source clock. Subsequent timer periods do not have such delay. The amount of delay for the first timer period depends on the chosen source clock.

Timer source clock	Minimum timer period	Maximum timer period
4.096 kHz	Т	T+1
64 Hz	Т	T+1
1 Hz	$(T-1) + \frac{1}{64Hz}$	$T + \frac{1}{64Hz}$
1/60 Hz	$(T-1) + \frac{1}{64Hz}$	$T + \frac{1}{64Hz}$

At the end of every countdown, the timer sets the countdown timer flag (bit TF in register Control_2). Bit TF can only be cleared by command. The asserted bit TF can be used to generate an interrupt at pin INT. The interrupt may be generated as a pulsed signal every countdown period or as a permanently active signal which follows the condition of bit TF. Bit TI_TP is used to control this mode selection and the interrupt output may be disabled with bit TIE.

When reading the timer, the current countdown value is returned and not the initial value T. Since it is not possible to freeze the countdown timer counter during read back, it is recommended to read the register twice and check for consistent results.

Timer source clock frequency selection of 1 Hz and 1/60 Hz is affected by the Offset register. The duration of a program period varies according to when the offset is initiated. For example, if a 100 s timer is set using the 1 Hz clock as source, then some 100 s periods will contain correction pulses and therefore be longer or shorter depending on the setting of the Offset register.

Countdown timer interrupts

The pulse generator for the countdown timer interrupt uses an internal clock and is dependent on the selected source clock for the countdown timer and on the countdown value T. As a consequence, the width of the interrupt pulse varies.

Source clock (Hz)	INT period (s)		
	T= 1 ^[1]	T> 1 ^[1]	
4096	1/8192	1/4096	
64	1/ ₁₂₈	1/64	
1	1/64	1/64	
1/60	1/64	1/64	

Note:

T = loaded countdown value. Timer stops when T = 0.

IIC Bus Interface

This bus is intended for communication between different ICs. It consists of two lines: one bidirectional for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be pulled up via a pull-up resistors.

The following protocol has been defined:

Data transfer may be initiated only when the bus is not busy.

- During data transfer, the data line must remain stable whenever the clock line is high.
- Changes in the data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy

Both data and clock lines remain high.

Start data transfer

A change in the state of the data line, from high to low, while the clock is high, defines the START condition.

Stop data transfer

A change in the state of the data line, from low to high, while the clock is high, defines the STOP condition.

Data valid

The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.

Acknowledge

Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte. Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master receiver must signal an end-of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave the data line high to enable the master to generate the STOP condition.

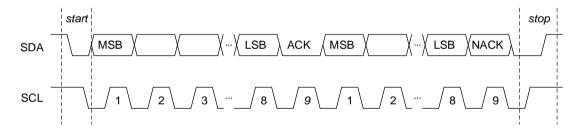


Figure8: Serial bus data transfer sequence

Read mode

In this mode, the master reads the RS4C85063 slave after setting the slave address Following the write mode control bit (R/W = 0) and the acknowledge bit, the word address An is written to the on-chip address pointer. Next the START condition and slave address are repeated, followed by the READ mode control bit (R/W = 1). At this point, the

master transmitter becomes the master receiver. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit.

The RS4C85 slave transmitter will now place the data byte at address An + 1 on the bus. The master receiver reads and acknowledges the new byte and the address pointer is incremented to An + 2. This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

Figure9 Read Mode Sequence

Write mode

In this mode the master transmitter transmits to the RS4C85063 slave receiver. Following the START condition and slave address, a logic '0' (R/W = 0) is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the memory is strobed in next and the internal address pointer is incremented to the next memory location within the RAM on the reception of an acknowledge clock. The RS4C85063A slave receiver will send an acknowledge clock to the master transmitter after it has received the slave address and again after it has received the word address and each data byte.

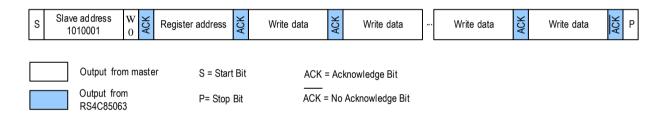


Figure 10 Write Mode Sequence

24 RSM-DS-R-0073

Limiting values

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.5	V
I _{DD}	supply current		-50	+50	mA
Vı	input voltage	on pins SCL, SDA, OSCI, CLKOE	-0.5	+6.5	V
Vo	output voltage		-0.5	+6.5	V
l _l	input current	at any input	-10	+10	mA
lo	output current	at any output	-10	+10	mA
P _{tot}	total power dissipation		-	300	mW
V _{ESD} electrostatic discharge voltage		НВМ	-	±5000	V
		CDM			
	-	RS4C85063ATLZZE	-	±1750	V
		RS4C85063ATWE	-	±2000	V
		RS4C85063ATUE	-	±2000	V
I _{lu}	latch-up current		-	200	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature	operating device	-40	+85	°C

Note:

The RS4C85063 part is not guaranteed (nor characterized) above the operating range as denoted in the datasheet. Recommends not to bias the RS4C85063 device during reflow (e.g. if utilizing a 'coin' type battery in the assembly). If customer so chooses to continue to use this assembly method, there must be the allowance for a full '0 V' level Power supply `reset' to reenable the device. Without a proper POR, the device may remain in an indeterminate state.

DC Electrical Characteristics

VDD = 1.1 V to 5.5 V; GND = 0 V; T_{amb} = -40 °C to +85 °C; f_{osc} = 32.768 kHz; unless otherwise specified.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
Supplies						
V	V _{DD} supply voltage	interface inactive; f _{SCL} =0 Hz ^[1]	1.1	-	5.5	V
VDD		interface active; $f_{SCL} = 400 \text{ kHz}^{\frac{[2]}{2}}$	1.8	-	5.5	V
		CLKOUT disabled; $V_{DD} = 3.3 \text{ V}$, $f_{SCL} = 0 \text{ Hz}$				
		T _{amb} = 25 °C	-	220	450	nA
I _{DD}	supply current	$T_{amb} = 50 {}^{\circ}C^{[4]}$	-	250	500	nA
		T _{amb} = 85 °C	-	470	600	nA
		interface active; f _{SCL} = 400 kHz	-	18	50	uA
		Inputs ^[5]			-1	
VI	input voltage		-0.5	-	+5.5	V
V_{IL}	LOW-level input voltage		-0.5	-	+0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	5.5	V
		$V_I = GND \text{ or } V_{DD}$	-	0	-	mA
I _{LI}	input leakage current	post ESD event	-0.15	-	+0.15	mA
Ci	input capa	acitance ^[6]	-	-	7	pF
		Outputs				
V _{OH}	HIGH-level output voltage	on pin CLKOUT	0.8V _{DD}	-	V_{DD}	V
V _{OL}	LOW-level output voltage	on pins SDA, INT, CLKOUT	V _{SS}	-	0.2V _{DD}	V
Іон	HIGH-level output current	output source current; V _{OH} = 2.9 V; V _{DD} = 3.3 V; on pin CLKOUT	1	3	-	mA
		output sink current; V _{OL} = 0.4 V V _{DD} = 3.3 V				
I _{OL}	LOW-level output current	on pin SDA	3	8.5	-	mA
		on pin INT	2	6	-	mA
i		on pin CLKOUT	1	3	-	mA

Crystal electrical characteristics

 $VDD = 1.1 \text{ V to } 5.5 \text{ V}; VSS = 0 \text{ V}; Tamb = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}; f_{OSC} = 32.768 \text{ kHz}; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Oscillator	Oscillator					
Df _{osc} /f _{osc}	relative oscillator frequency variation	DV _{DD} = 200 mV; T _{amb} = 25 °C	-	0.075	-	ppm
$C_{L(itg)}$	integrated load capacitance	C _L = 7 pF	4.2	7	9.8	pF
		C _L = 12.5 pF	7.5	12.5	17.5	pF
Rs	series resistance		-	-	100	kΩ

IIC AC Characteristics

VDD = 1.8 V to 5.5 V; GND =0 V; Tamb = -40 °C to +85 °C; fosc = 32.768 kHz; unless otherwise specified. All timing values are valid within the operating supply voltage and temperature range and referenced to VIL and VIH with an input voltage swing of GND to VDD

Symbol	Parameter	Min	Max	Unit
C _b	capacitive load for each bus line	-	400	pF
f _{SCL}	SCL clock frequency ^[1]	0	400	kHz
t _{HD;STA}	hold time (repeated) START condition	0.6	-	us
t _{SU;STA}	set-up time for a repeated START condition	0.6	-	us
t _{LOW}	LOW period of the SCL clock	1.3	-	us
t _{HIGH}	HIGH period of the SCL clock	0.6	-	us
t _r	rise time of both SDA and SCL signals	20	300	ns
t _f	fall time of both SDA and SCL signals ^[2]	20 ′ (V _{DD} / 5.5 V)	300	ns
t _{BUF}	bus free time between a STOP and START condition	1.3	-	us
t _{SU;DAT}	data set-up time	100	1	ns
t _{HD;DAT}	data hold time	0	-	ns
t _{SU;STO}	set-up time for STOP condition	0.6	-	us
t _{VD;DAT}	data valid time	0	0.9	us
t _{VD;ACK}	data valid acknowledge time	0	0.9	us
t _{SP}	pulse width of spikes that must be suppressed by the input filter	0	50	ns

Note:

[1]I2C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.

[2] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum tf for the SDA and SCL bus lines is specified at

300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.

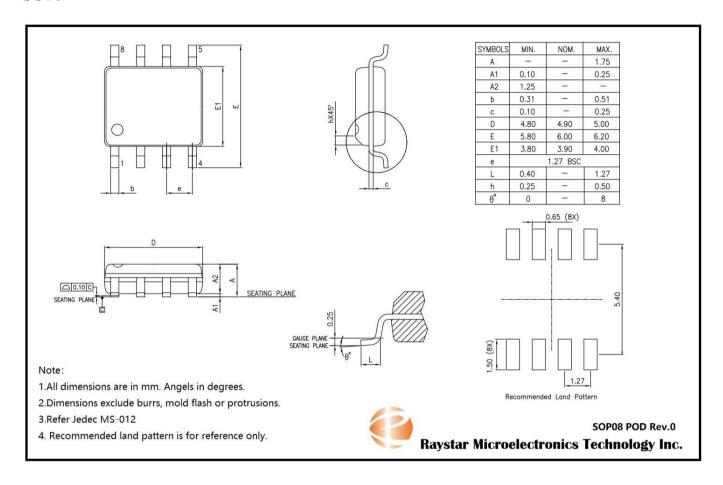
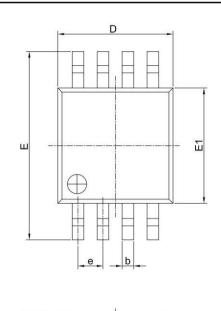
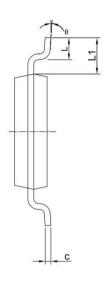



Figure11 I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %


Package Information


SOP8

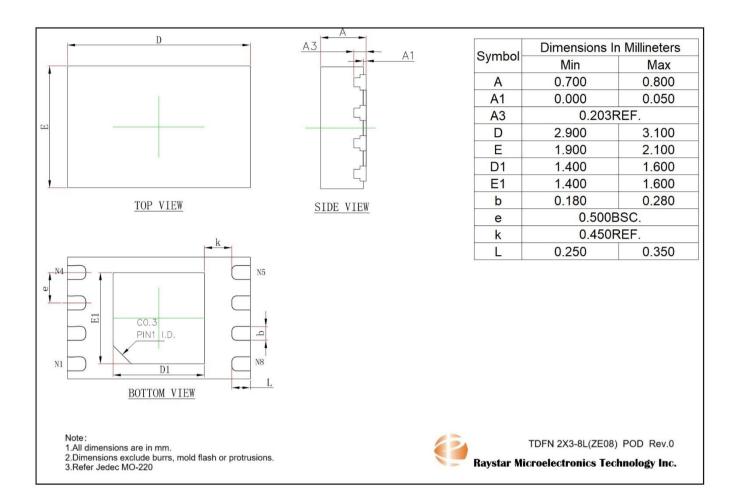
MSOP8

PKG D	IMENSION	S(MM)
SYMBOL	Min.	Max
Α		1.10
A1	0.00	0.15
A2	0.75	0.95
b	0.22	0.38
С	0.08	0.23
D	2.80	3.20
E	4.65	5.15
E1	2.80	3.20
е	0.65	BSC
L	0.40	0.80
L1	0.95	REF
θ	0°	8°

Note:

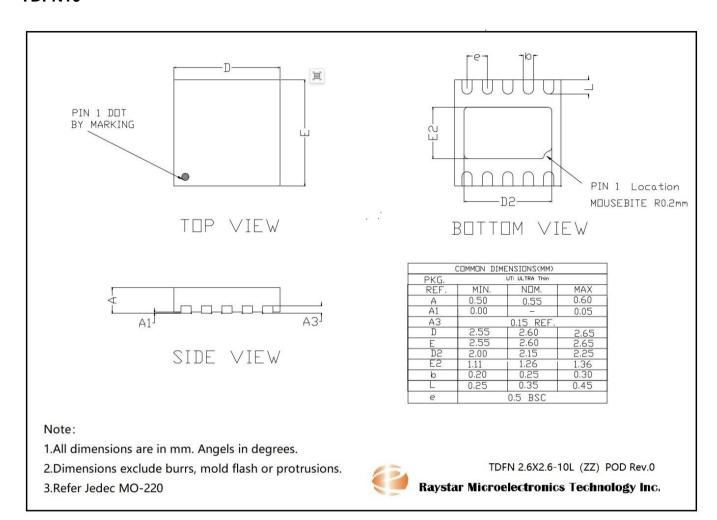
- 1.All dimensions are in mm. Angels in degrees.
- 2.Refer Jedec MO-187

3. Dimensions exclude burrs, mold flash or protrusions.



MSOP08

Raystar Microelectronics Technology Inc.



TDFN8

TDFN10

Revision History

Revision	Description	Date
0.9	Preliminary Release	2024/3/13
1.0	Initial Release	2024/7/16
1.1	Update IIC AC Characteristics Unit	2024/8/8
1.2	Add RS4C85063B part number	2024/11/26
1.3	Add DFN8 part number	2024/12/2