

Features

- No Direction-Control
- Max Data Rates
 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- 1.2V to 3.63V on A ports and 1.2V to 3.63V on B Ports
- VCCA can be Less than, Greater than or Equal to VCCB
- VCC Isolation: If Either VCC is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: VCCA or VCCB can be Ramped First
- ESD protection exceeds 6000V HBM, 1000V CDM
- AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.
- Grade 1 temperature range (- 40°C ~ +125 °C)

Applications

- I2C/SMBus
- SPI Interface
- UART
- Handheld Devices Interface

Description

The RS7LS104Q is a 4-bit configurable dual supply bidirectional auto sensing translator that does not require a directional control pin. The A and B ports are designed to track two different power supply rails, VCCA and VCCB respectively.

A port supporting operating voltages from 1.2V to 3.63V while it tracks the VCCA supply, and the B ports supporting operating voltages from 1.2V to 3.63V while it tracks the VCCB supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.2V,1.8V, 2.5V, 3.3V voltage and 3.63V nodes.

When the output-enable (EN) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, EN should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Information

Ordering Code	Package	Description
RS7LS104QZME	ZM	UQFN-12, 1.7mmx2.0 mm
RS7LS104QLE	L	TSSOP-14, pitch 0.65mm
RS7LS104QZBE	ZB	TQFN-14, 3.5mmX3.5mm

Notes:

E = Pb-free and Green

Block Diagram

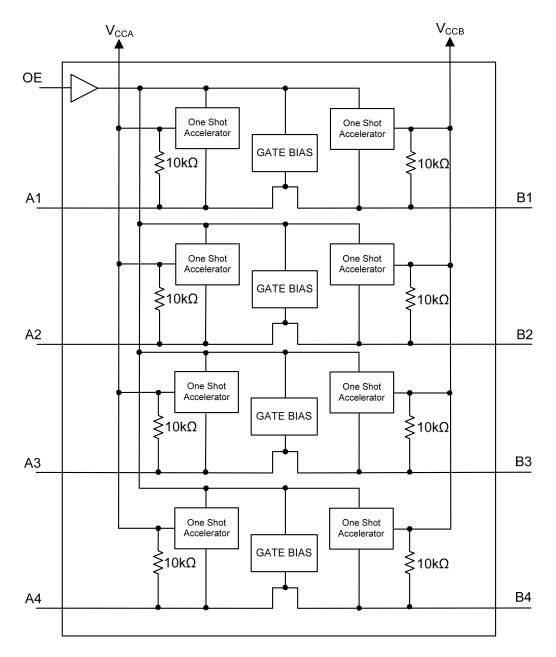
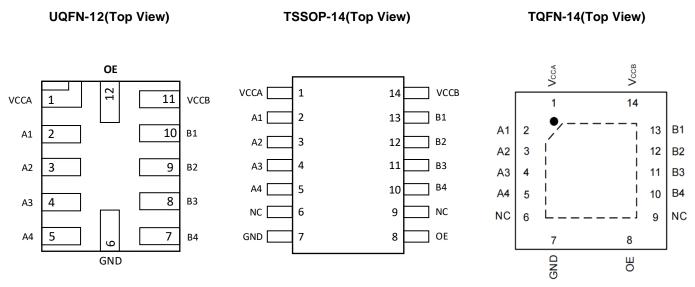



Figure 1 Block Diagram

Pin Configuration

Figure 2 Pin Configuration

Pin Name	UQFN-12	TSSOP-14	TQFN-14	Description
VCCA	1	1	1	A-port supply voltage.1.2V ≤ VCCA ≤3.63 V
A1	2	2	2	Input/output A. Referenced to VCCA.
A2	3	3	3	Input/output A. Referenced to VCCA
A3	4	4	4	Input/output A. Referenced to VCCA
A4	5	5	5	Input/output A. Referenced to VCCA
GND	6	7	7	Ground.
OE	12	8	8	Output enables (active High). Pull OE low to place all outputs in 3-state mode.
B4	7	10	10	Input/output B. Referenced to VCCB
B3	8	11	11	Input/output B. Referenced to VCCB
B2	9	12	12	Input/output B. Referenced to VCCB
B1	10	13	13	Input/output B. Referenced to VCCB
VCCB	11	14	14	B-port supply voltage.1.2V ≤ VCCB ≤3.63V
NC	/	6,9	6,9	Not Connect

Absolute Maximum Ratings

Symbol	Parameter	MIN	ТҮР	MAX	Unit
Tstore	Storage Temperature	-65	-	150	°C
VCCA	DC Supply Voltage port B	-0.3	-	5.5	V
VCCB	DC Supply Voltage port A	-0.3	-	5.5	V
VIOB	Vi(A) referenced DC Input / Output Voltage	-0.3	-	5.5	V
VIOB	Vi(B) referenced DC Input / Output Voltage	-0.3	-	5.5	V
VEN	Enable Control Pin DC Input Voltage	-0.3	-	5.5	V
Ishort	Short circuit duration (I/O to GND)			50	mA

Notes:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended operation conditions

Symbol	Parameter	MIN	TYP	MAX	Unit
VCCA	VCCA Positive DC Supply Voltage	1.2	-	3.63	V
VCCB	VCCB Positive DC Supply Voltage	1.2	-	3.63	V
VEN	Enable Control Pin Voltage	GND	-	3.63	V
VIO	I/O Pin Voltage	GND	-	3.63	V
Δt /ΔV	Input transition rise or fall time	-	-	10	ns/V
ТА	Operating Temperature Range	-40	-	125	°C

DC Electrical Characteristics

Unless otherwise specified, -40°C≤T_a≤125° C, $1.2V{\le}V{\tiny\tt CCA}{\le}3.63V$, $1.2V{\le}V{\tiny\tt CCB}{\le}3.63V$

Symbol	Parameter	Test Conditions*1		MIN	TYP	MAX	Unit
		2.3V≤VCCA	A ≤3.63V	VCCA - 0.4			V
VIHA	A port Input HIGH Voltage	1.2V≤VCCA < 2.3V		VCCA - 0.2			V
VILA	A port Input LOW Voltage	1.2V≤VCCA	A ≤3.63V	-	-	0.15	V
VIHB	B port Input HIGH Voltage	2.3V≤VCCE	3 ≤3.63V	VCCB - 0.4	-	-	V
VIND	B poit input high voitage	1.2V≤VCCA	A <2.3V	VCCB - 0.2			
VILB	B port Input LOW Voltage	1.2V≤VCCE	3 ≤3.63V	-	-	0.15	V
VIH(EN)	Control Pin Input HIGH Voltage	1.2V≤VCCA	A ≤3.63V	0.65*VCCA	-	-	V
	Control Pin Input LOW Voltage	1.65V≤VCC	CA ≤3.63V	-	-	0.35* VCCA	
VIL(EN)	Control Pill input LOW Voltage	1.2V≤VCCA	A < 1.65V			0.15	V
VOHA	A port Output HIGH Voltage	A port source	ce current= -20 μA	0.8* VCCA	-	-	V
VOLA	A port Output LOW Voltage	A port sink of	current =1 mA	-	-	0.4	V
VOHB	B port Output HIGH Voltage	B port source	ce current = -20 μA	0.8*VCCB	-	-	V
VOLB	B port Output LOW Voltage	B port sink of	current =1 mA	-	-	0.4	V
			VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V	-	0.2	2.4	μA
ICCA	VCCA Supply Current	OE=High	VCCA= 3.63V, VCCB= 0V	-	-	2	μA
			VCCA= 0V, VCCB=3.63V	-	-	1	μA
			VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V	-	0.5	10	μA
ICCB	VCCB Supply Current	OE=High	VCCA= 3.63V, VCCB= 0V	-		1	μA
			VCCA= 0V, VCCB=3.63V	-		8	μA
ICCA +ICCB	Combined supply current	OE=High	VCCA=1.2V to 3.63V, VCCB=1.2V to 3.63V			15	μA
ICCZA	Static supply current VCCA	05.1.00	VCCA=1.2V to 3.63V,			8	μA
ICCZB	Static supply current VCCB	OE=Low	VCCB=1.2V to 3.63V			8	μA
IOZ	I/O Tri-state Output Mode	A or B	VIA=0~VCCA			. 0	
102	Leakage Current	Port	VIB=0~VCCB			±8	μA
		A port	A port VCCA=0V, VCCB=1.2V to 3.63V			±8	μA
IOFF	Partial power down current	B port	VCCA=1.2V to 3.63V VCCB=0V			±8	μA
II-EN	Control pin leakage Current	VI = VCCI or GND		-	-	±2	μA
RPU	Pull-Up Resistors I/O A and B	-	-		10	-	kΩ
Ci	EN	VCCA= 3.3	V, VCCB= 3.3V	-	-	1	pF
00	A port	VCCA= 3.3	V, VCCB= 3.3V	-	-	5	pF
CIO	B port	VCCA= 3.3	V, VCCB= 3.3V	-	-	5	pF

Note:

1. All units are production tested at TA = $+25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design. Typical values are for VCCB = +3.3 V, VCCA = +1.8 V and TA = $+25^{\circ}$ C.

AC Electrical characteristics

 $C_{LOAD} = 15 pF$, driver output impedance $\leq 50 \Omega$, $R_{LOAD} = 1 M\Omega$, TA = -40°C to 125°C,

V_{CCA}= 1.2V

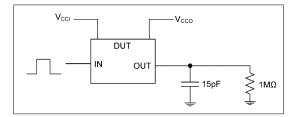
	P	T	VCCE	3=1.8V	VCC	B=2.5V	VCCB	=3.3V	
Symbol	Parameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Unit
+		Push-pull		12		10		10	ns
t _{PHL_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
+		Push-pull		20		15		15	ns
t _{PLH_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
4		Push-pull		12		10		10	ns
t _{PHL_BA}	Propagation Delay $B \rightarrow A$	Open-drain		30		30		30	ns
+		Push-pull		20		15		15	ns
t _{PLH_BA}	Propagation Delay $B \rightarrow A$	Open-drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		380		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
+	A nort Dine Time	Push-pull		30		30		30	ns
t _{RA}	A port Rise Time	Open-drain		160		120		120	ns
	Disast Disas Times	Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
		Push-pull		20		20		25	ns
t _{FA}	A port Fall Time	Open-drain		30		30		30	ns
		Push-pull		20		20		25	ns
t _{FB}	B port Fall Time	Open-drain		30		30		30	ns
t _{SKEW}	Channel to Channel	el Skew		1		1		1	ns
		Push-pull	20		20		20		Mbps
MDR	Maximum Data Rate	Open-drain	2		2		2		Mbps

VCCA= 1.8V

Symbol	Parameter	Test Conditions	VCC	B=1.2V	VCC	B=2.5V	VCCB	= 3.3V	
Symbol	Parameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Unit
+		Push-pull		12		10		9	ns
t _{PHL_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
		Push-pull		20		12		11	ns
t _{PLH_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
		Push-pull		12		9		9	ns
t _{PHL_BA}	Propagation Delay $B \rightarrow A$	Open-drain		30		30		30	ns
		Push-pull		20		14		12	ns
t _{PLH_BA}	Propagation Delay B →A	Open-drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
	A next Dies Time	Push-pull		30		30		30	ns
t _{RA}	A port Rise Time	Open-drain		160		120		120	ns
	B port Rise Time	Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
	A port Foll Time	Push-pull		20		20		25	ns
t _{FA}	A port Fall Time	Open-drain		30		30		30	ns
		Push-pull		20		25		30	ns
t _{FB}	B port Fall Time	Open-drain		30		30		30	ns
t _{SKEW}	Channel to Cha	annel Skew		1		1		1	ns
	Maximum Data D i	Push-pull	20	1	20		24		Mbps
MDR	Maximum Data Rate	Open-drain	2	1	2		2		Mbps

V_{CCA} = 2.5V

Symbol	Parameter	Test Conditions	VCCE	B= 1.2V	VCCB	8= 1.8V	VCCB	= 3.3V	Unit
Cymbol	rarameter		MIN	MAX	MIN	MAX	MIN	MAX	onne
+		Push-pull		10		9		9	ns
t _{PHL_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
		Push-pull		15		12		10	ns
t _{PLH_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
		Push-pull		10		10		9	ns
t _{PHL_BA}	Propagation Delay $B \rightarrow A$	Open-drain		30		30		30	ns
		Push-pull		15		12		12	ns
t _{PLH_BA}	Propagation Delay $B \rightarrow A$	Open-drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
	A port Rise Time	Push-pull		30		30		30	ns
t _{RA}	A port Rise fille	Open-drain		160		120		120	ns
	D port Dice Time	Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
	A port Fall Time	Push-pull		20		25		30	ns
t _{FA}	A port Fail Time	Open-drain		30		30		30	ns
	D port Foll Time	Push-pull		20		20		25	ns
t _{FB}	B port Fall Time	Open-drain		30		30		30	ns
t _{SKEW}	Channel to Chan	nel Skew		1		1		1	ns
MDD	Maximum Data Rate	Push-pull	20		20		24		Mbps
MDR	INIAXIMUM DAIA RALE	Open-drain	2		2		2		Mbps


V_{CCA} = 3.3V

Cumhal	Devementer	Toot Conditions	VCC	CB= 1.2V	VCC	B= 1.8V	VCC	B = 2.5V	
Symbol	Parameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Unit
+		Push-pull		10		9		9	ns
t _{PHL_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
4		Push-pull		15		12		12	ns
t _{PLH_AB}	Propagation Delay A \rightarrow B	Open-drain		30		30		30	ns
		Push-pull		10		9		9	ns
t _{PHL_BA}	Propagation Delay $B \rightarrow A$	Open-drain		30		30		30	ns
		Push-pull		15		11		10	ns
t _{PLH_BA}	Propagation Delay B →A	Open-drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
	A port Disc Time	Push-pull		30		30		30	ns
t _{RA}	A port Rise Time	Open-drain		160		120		120	ns
	P port Pice Time	Push-pull		30		30		30	ns
t _{RB}	B port Rise Time	Open-drain		160		160		160	ns
4	A port Fall Time	Push-pull		25		25		25	ns
t _{FA}	A port Fail Time	Open-drain		30		30		30	ns
	D port Foll Time	Push-pull		25		25		25	ns
t _{FB}	B port Fall Time	Open-drain		30		30		30	ns
t _{SKEW}	Channel to Channel Sk	ew		1		1		1	ns
MDD	Maximum Data Data	Push-pull	20	1	24		24		Mbps
MDR	Maximum Data Rate	Open-drain	2	1	2		2		Mbps

Parameter Measurement Information

Load Circuits

Figure 3 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver

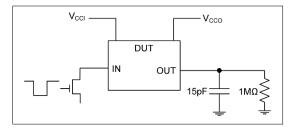
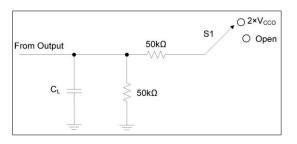
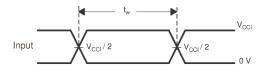



Figure 4 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver

TEST	S1
tPZL / tPLZ	2 × VCCO
tPHZ / Tpzh	Open

Figure 5 Load Circuit for Enable-Time and Disable-Time Measurement

Notes:


- 1. CL includes probe and jig capacitance.
- 2. ten is the same as tPZL and tPZH. tdis is the same as tPLZ and tPHZ.
- 3. VCCI is the supply voltage associated with the input.
- 4. VCCO is the supply voltage associated with the input.

Voltage Waveforms

The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by generators that have the following characteristics:

- PRR ≤10 MHz
- Z_O = 50 Ω
- dv/dt ≥1 V/ns

Figure 6 Pulse Duration

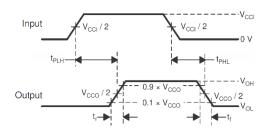
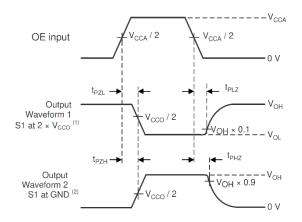
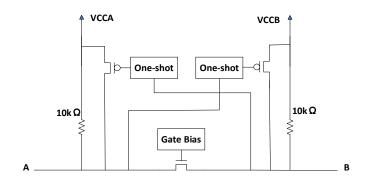



Figure 7 Propagation Delay Times

A. Waveform 1 is for an output with internal such that the output is high, except when OE is high.B. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.


Figure 8 Enable and Disable Times

Functional Description

Architecture

The RS7LS104Q architecture does not require a direction-control signal in order to control the direction of data flow from A to B or from B to A.

Figure 9 Level Shifter Architecture

Each A-port I/O has an internal $10k\Omega$ pull up resistor to V_{CCA} , and each B-port I/O has an internal $10k\Omega$ pullup resistor to V_{CCB} . The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors for a short duration, which speeds up the low-to-high transition.

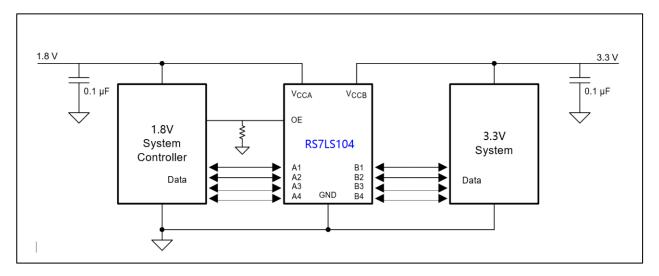
Input Driver Requirements

The rise (tR) and fall (tF) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In -addition, the propagation times (tPD), skew (tSKEW) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than 50 k Ω .

Enable Input (OE)

The RS7LS104Q has an Enable pin (OE) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O VCCB and I/O VCCA pins to a high impedance state. Normal translation operation occurs when the OE pin is equal to a logic high signal. The OE pin is referenced to the VCCA supply and has overvoltage tolerant protection.

Pull-up or Pull-down Resistors on I/O Lines

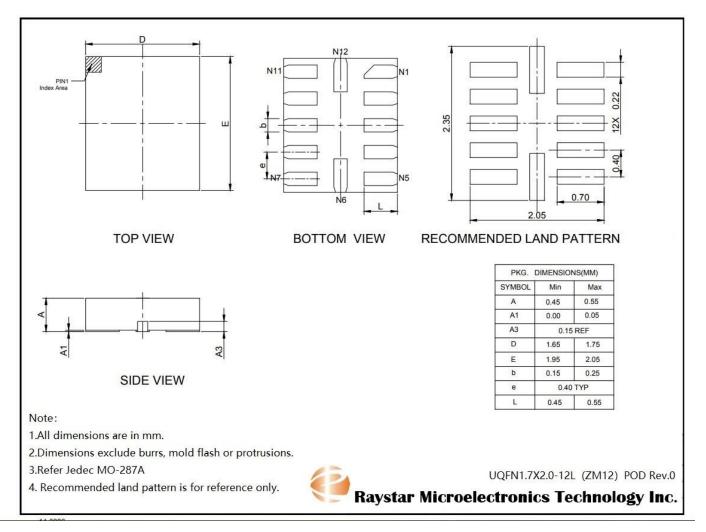

Each A-port I/O has an internal $10k\Omega$ pull-up resistor to VCCA, and each B-port I/O has an internal $10 k\Omega$ pull-up resistor to VCCB. If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to VCCA or VCCB (in parallel with the internal $10 k\Omega$ resistors).

Device Functional Modes

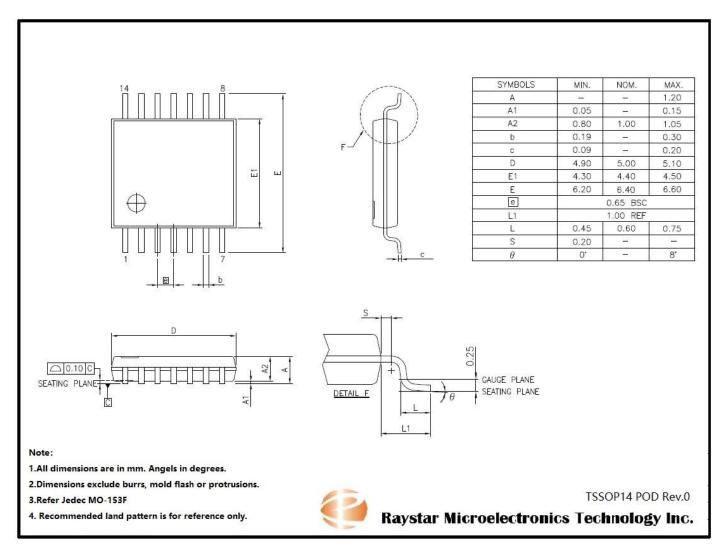
The RS7LS104Q device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.

Application Information

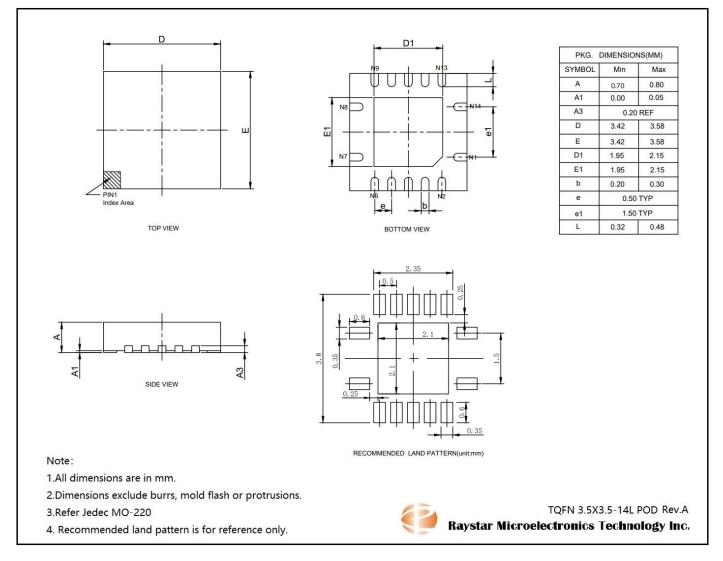
Figure 10 Application Circuit


Power Supply Guidelines

During normal operation, supply voltage V_{CCA} can be greater than, less than or equal to V_{CCB}. The sequencing of the power supplies will not damage the device during the power up operation. For optimal performance, 0.01μ F to 0.1μ F decoupling capacitors should be used on the V_{CCA} and V_{CCB} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.


Package Information

UQFN 1.7x2.0-12L



TSSOP-14L

TQFN3.5X3.5-14L

Revision History

Revision	Description	DATE
1.0	Initial Release	2024/5/28
1.1	ADD TQFN-14 package and ordering information	2024/9/14