

Features

- No Direction-Control
- Max Data Rates
 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- 1.2V to 3.63V on A ports and 1.2V to 3.63V on B Ports
- VCCA can be Less than, Greater than or Equal to VCCB
- VCC Isolation: If Either VCC is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: VCCA or VCCB can be Ramped First
- ESD protection exceeds 4000V HBM
- Extended Temperature: -40°C to +125°C

Applications

- I2C/SMBus
- SPI Interface
- UART
- Handheld Devices Interface

Description

The RS7LS104 is a 4-bit configurable dual supply bidirectional auto sensing translator that does not require a directional control pin. The A and B ports are designed to track two different power supply rails, VCCA and VCCB respectively.

A port supporting operating voltages from 1.2V to 3.63V while it tracks the VCCA supply, and the B ports supporting operating voltages from 1.2V to 3.63V while it tracks the VCCB supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.2V,1.8V, 2.5V, 3.3V and 3.63V voltage nodes.

When the output-enable (EN) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, EN should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Information

Ordering Code	Package	Description
RS7LS104ZME	ZM	UQFN-12, 1.7x2.0 mm
RS7LS104LE	L	TSSOP-14, pitch 0.65mm
RS7LS104ZBE	ZB	TQFN-14, 3.5X3.5 mm

Notes:

E = Pb-free and Green

Block Diagram

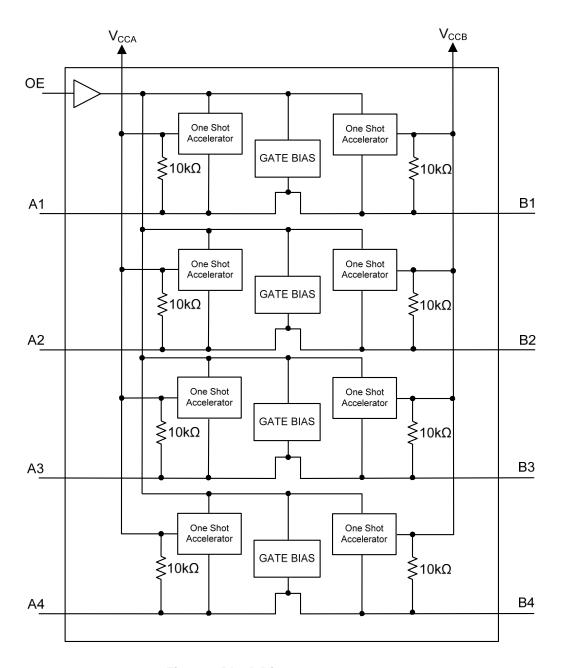


Figure 1 Block Diagram

Pin Configuration

Figure 2 Pin Configuration

Pin Name	UQFN-12	TSSOP-14	TQFN-14	Description
VCCA	1	1	1	A-port supply voltage.1.2V ≤ Vcca ≤3.63 V
A1	2	2	2	Input/output A. Referenced to Vcca.
A2	3	3	3	Input/output A. Referenced to VCCA
А3	4	4	4	Input/output A. Referenced to Vcca
A4	5	5	5	Input/output A. Referenced to VCCA
GND	6	7	7	Ground.
OE	12	8	8	Output enable(active High).
OL .	12			Pull OE low to place all outputs in 3-state mode.
B4	7	10	10	Input/output B. Referenced to VCCB
В3	8	11	11	Input/output B. Referenced to VCCB
B2	9	12	12	Input/output B. Referenced to VccB
B1	10	13	13	Input/output B. Referenced to VCCB
Vссв	11	14	14	B-port supply voltage.1.2V ≤ Vccs≤3.63V
NC	/	6,9	6,9	Not Connect

Absolute Maximum Ratings

Symbol	Parameter	MIN	TYP	MAX	Unit
Tstore	Storage Temperature	-65	-	+150	°C
Vcca	DC Supply Voltage port B		-	5.5	V
Vccв	DC Supply Voltage port A	-0.3	-	5.5	V
Vіов	Vi(A) referenced DC Input / Output Voltage	-0.3	-	5.5	V
VIOB	Vi(B) referenced DC Input / Output Voltage	-0.3	-	5.5	V
Ven	Enable Control Pin DC Input Voltage	-0.3	-	5.5	V
Ishort	Short circuit duration (I/O to GND)			50	mA

Notes:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended operation conditions

Symbol	Parameter	MIN	TYP	MAX	Unit
Vcca	Vcca Positive DC Supply Voltage	1.2	-	3.63	V
Vccв	Vccb Positive DC Supply Voltage	1.2	-	3.63	V
Ven	Enable Control Pin Voltage	GND	-	3.63	V
Vio	I/O Pin Voltage	GND	-	3.63	V
Δt /ΔV	Input transition rise or fall time	-	-	10	ns/V
Та	Operating Temperature Range	-40	-	+125	°C

DC Electrical Characteristics

Unless otherwise specified, -40°C≤Ta≤125° C, 1.2V≤Vcca≤3.63V , 1.2V≤Vccb≤3.63V

Symbol	Parameter	Tes	st Conditions*1	MIN	TYP	MAX	Unit
		2.3V≤Vcc	√ ≤3.63V	Vcca - 0.4			V
Viha	A port Input HIGH Voltage	1.2V≤VccA	< 2.3V	Vcca - 0.2			V
VILA	A port Input LOW Voltage	1.2V≤Vcc/	4 ≤3.63V	-	-	0.15	V
		2.3V≤Vcce	3 ≤3.63V	Vссв — 0.4	-	-	V
Vінв	B port Input HIGH Voltage	1.2V≤VccA	< 2.3V	Vccв - 0.2			
VILB	B port Input LOW Voltage	1.2V≤Vcci	3 ≤3.63V	-	-	0.15	V
VIH(EN)	Control Pin Input HIGH Voltage	1.2V≤Vcc	4 ≤3.63V	0.65*Vcca	-	-	V
		1.65V≤Vc	CA ≤3.63V	-	-	0.35* Vcca	
VIL(EN)	Control Pin Input LOW Voltage	1.2V≤Vcc	x < 1.65V			0.15	V
Vона	A port Output HIGH Voltage	A port sour	ce current= -20 μA	0.8* Vcca	-	-	V
Vola	A port Output LOW Voltage	A port sink	current =1 mA	-	-	0.4	V
Vонв	B port Output HIGH Voltage	B port source current = -20 μA		0.8*Vссв	-	-	V
Volb	B port Output LOW Voltage	B port sink current =1 mA		-	-	0.4	V
			Vcca=1.2V to 3.63V, Vccb=1.2V to 3.63V	-	0.2	2.4	μA
Icca	Vcca Supply Current	OE=High	VCCA= 3.63V, VCCB= 0V	-	-	2	μΑ
			VCCA= 0V, VCCB=3.63V	-	-	1	μΑ
			Vcca=1.2V to 3.63V, Vccb=1.2V to 3.63V	-	0.5	10	μA
Іссв	Vccb Supply Current	OE=High	VCCA= 3.63V, VCCB= 0V	-		1	μΑ
			VCCA= 0V, VCCB=3.63V	-		1	μΑ
Ісса +Іссв	Combined supply current	OE=High	Vcca=1.2V to 3.63V, Vccb=1.2V to 3.63V			15	μA
Iccza	Static supply current Vcca		Vcca=1.2V to 3.63V,			8	μΑ
Іссzв	Static supply current Vccb	OE=Low	VccB=1.2V to 3.63V			8	μΑ
l _{OZ}	I/O Tri-state Output Mode Leakage Current	A or B Port	VIA=0~VCCA VIB=0~VCCB			±8	μA
		A port	Vcca=0V, Vccb=1.2V to 3.63V			±8	μA

loff	Partial power down current	B port	V _{CCA} =1.2V to 3.63V V _{CCB} =0V			±8	μA
l _{I-EN}	Control pin leakage Current	Vı = Vccı or	GND	-	-	±2	μA
R _{PU}	Pull-Up Resistors I/O A and B	-		-	10	-	kΩ
Ci	EN	Vcca= 3.3V	, Vccb= 3.3V	-	-	1	pF
_	A port	Vcca= 3.3V	, Vccb= 3.3V	-	-	5	pF
Сю	B port	Vcca= 3.3V	, Vccb= 3.3V	-	-	5	pF

Note:

1. All units are production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design. Typical values are for Vccb = +3.3 V, VccA = +1.8 V and $T_A = +25 ^{\circ}\text{C}$.

AC Electrical characteristics

CLOAD = 15pF, driver output impedance $\leq 50\Omega$, RLOAD = 1 M Ω , TA = -40°C to 125° C, V_{CCA}= 1.2V

Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		Vссв	=1.8V	V ссв=	=2.5V	V _{CCB} :	=3.3V	
Symbol	Farameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Unit
	Propagation Delay A > B	Push-pull		12		10		10	ns
t PHL_AB	Tropagation Delay A > B	Open- drain		30		30		30	ns
	Propagation Delay A > B	Push-pull		20		15		15	ns
t PLH_AB	Fropagation Delay A > B	Open- drain		30		30		30	ns
	Draw a realism Delay D. A	Push-pull		12		10		10	ns
t PHL_BA	Propagation Delay B > A	Open- drain		30		30		30	ns
		Push-pull		20		15		15	ns
t PLH_BA	Propagation Delay B > A	Open- drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		380		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
		Push-pull		30		30		30	ns
t _{RA}	A port Rise Time	Open- drain		160		120		120	ns
		Push-pull		30		30		30	ns
t RB	B port Rise Time	Open- drain		160		160		160	ns
		Push-pull		20		20		25	ns
t _{FA}	A port Fall Time	Open- drain		30		30		30	ns
		Push-pull		20		20		25	ns
t FB	B port Fall Time	Open- drain		30		30		30	ns
t _{SKEW}	Channel to Char	inel Skew		1		1		1	ns
		Push-pull	20		20		20		Mbps
MDR	Maximum Data Rate	Open- drain	2		2		2		Mbps

 $C_{LOAD} = 15 pF$, driver output impedance $\leq 50 \Omega$, $R_{LOAD} = 1 M\Omega$, $T_A = -40 ^{\circ}C$ to $125 ^{\circ}$ C, $V_{CCA} = 1.8 V$ Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Took Conditions	V ссв=	=1.8V	Vccв	=2.5V	V _{CCB} =	:3.3V	Unit
Cy	raidineter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	
_	Propagation Delay A > B	Push-pull		12		10		9	ns
t PHL_AB	Tropagation Delay A > B	Open- drain		30		30		30	ns
	Propagation Delay A > B	Push-pull		20		12		11	ns
t PLH_AB	Tropagation Delay A > B	Open- drain		30		30		30	ns
	Propagation Delay B > A	Push-pull		12		9		9	ns
t PHL_BA	Fropagation Delay B > A	Open- drain		30		30		30	ns
_	Propagation Delay B > A	Push-pull		20		14		12	ns
t PLH_BA	Fropagation Delay B > A	Open- drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
_		Push-pull		30		30		30	ns
t RA	A port Rise Time	Open- drain		160		120		120	ns
_		Push-pull		30		30		30	ns
t RB	B port Rise Time	Open- drain		160		160		160	ns
		Push-pull		20		20		25	ns
t FA	A port Fall Time	Open- drain		30		30		30	ns
		Push-pull		20		25		30	ns
t FB	B port Fall Time	Open- drain		30		30		30	ns
tskew	Channel to Chan	nel Skew		1		1		1	ns
		Push-pull	20		20		24		Mbps
MDR	Maximum Data Rate	Open- drain	2		2		2		Mbps

8

CLOAD = 15pF, driver output impedance $\leq 50\Omega$, RLOAD = 1 M Ω , TA = -40°C to 125° C, V_{CCA} = 2.5V Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		Vcc	B= 1.8V	Vcc	в=2.5V	V _{CCE}	₃ =3.3V	Unit
Cymbol	Farameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Onn
_	Propagation Delay A > B	Push-pull		10		9		9	ns
t PHL_AB	Fropagation Delay A > B	Open- drain		30		30		30	ns
	Propagation Delay A > B	Push-pull		15		12		10	ns
t PLH_AB	Fropagation Delay A > B	Open- drain		30		30		30	ns
	Propagation Polov P > A	Push-pull		10		10		9	ns
t PHL_BA	Propagation Delay B > A	Open- drain		30		30		30	ns
	Dropogation Dolov D. A	Push-pull		15		12		12	ns
t PLH_BA	Propagation Delay B > A	Open- drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
		Push-pull		30		30		30	ns
t _{RA}	A port Rise Time	Open- drain		160		120		120	ns
		Push-pull		30		30		30	ns
t RB	B port Rise Time	Open- drain		160		160		160	ns
		Push-pull		20		25		30	ns
t _{FA}	A port Fall Time	Open- drain		30		30		30	ns
		Push-pull		20		20		25	ns
t FB	B port Fall Time	Open- drain		30		30		30	ns
t _{SKEW}	Channel to Chan	nel Skew		1		1		1	ns
		Push-pull	20		20		24		Mbps
MDR	Maximum Data Rate	Open- drain	2		2		2		Mbps

CLOAD = 15pF, driver output impedance $\leq 50\Omega$, RLOAD = 1 M Ω , TA = -40°C to 125° C, V_{CCA} = 3.3V Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Doromotor		Vccв	=1.8V	V ссв=	2.5V	V _{CCB} =3.3V		Unit
Symbol	Parameter	Test Conditions	MIN	MAX	MIN	MAX	MIN	MAX	Onit
t	Propagation Delay A > B	Push-pull		10		9		9	ns
t PHL_AB		Open- drain		30		30		30	ns
t	Propagation Delay A > B	Push-pull		15		12		12	ns
t PLH_AB		Open- drain		30		30		30	ns
t	Propagation Delay B > A	Push-pull		10		9		9	ns
t PHL_BA		Open- drain		30		30		30	ns
t	Propagation Delay B > A	Push-pull		15		11		10	ns
t PLH_BA		Open- drain		50		50		50	ns
t _{EN}	Enable Time	EN to A or B		200		200		200	ns
t _{DIS}	Disable Time	EN to A or B		200		200		200	ns
t	A port Rise Time	Push-pull		30		30		30	ns
t RA	7	Open- drain		160		120		120	ns
t	B port Rise Time	Push-pull		30		30		30	ns
t RB	D port rice Time	Open- drain		160		160		160	ns
t	A port Fall Time	Push-pull		25		30		25	ns
t FA	7. 60	Open- drain		30		30		30	ns
t	B port Fall Time	Push-pull		25		25		30	ns
t FB	D port i all i lillo	Open- drain		30		30		30	ns
t skew	Channel to Char	nnel Skew		1		1		1	ns
MDR	Maximum Data Rate	Push-pull	20		24		24		Mbps
WIDIX	Maximum Data Nate	Open- drain	2		2		2		Mbps

Parameter Measurement Information

Load Circuits

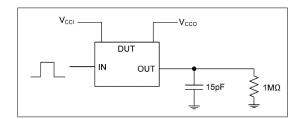


Figure 3 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver

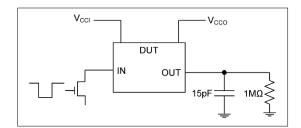
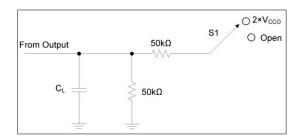
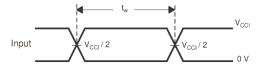



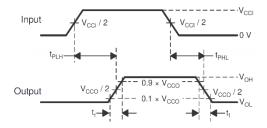
Figure 4 Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver

TEST	S1
tPZL / tPLZ (tdis)	2 × VCCO
tPHZ / Tpzh (ten)	Open

Figure 5 Load Circuit for Enable-Time and Disable-Time Measurement

Notes:


- 1. CL includes probe and jig capacitance.
- 2. ten is the same as tPZL and tPZH. tdis is the same as tPLZ and tPHZ.
- 3. Vccı is the supply voltage associated with the input.
- 4. Vcco is the supply voltage associated with the input.


Voltage Waveforms

The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by generators that have the following characteristics:

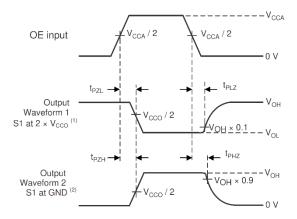
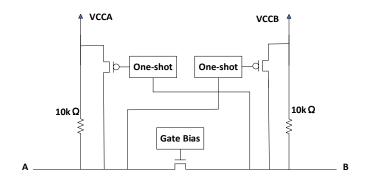

- PRR ≤10 MHz
- $Z_O = 50 \Omega$
- dv/dt ≥1 V/ns

Figure 6 Pulse Duration

Figure 7 Propagation Delay Times

- A. Waveform 1 is for an output with internal such that the output is high, except when OE is high.
- B. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.

Figure 8 Enable and Disable Times


12

Functional Description

Architecture

The RS7LS104 architecture does not require a direction-control signal in order to control the direction of data flow from A to B or from B to A.

Figure 9 Level Shifter Architecture

Each A-port I/O has an internal $10k\Omega$ pull up resistor to V_{CCA} , and each B-port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB} . The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors for a short duration, which speeds up the low-to-high transition.

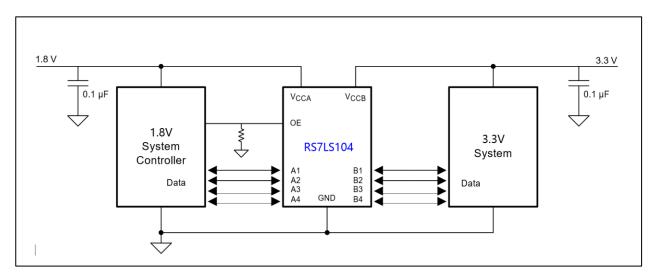
Input Driver Requirements

The rise (tR) and fall (tF) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In -addition, the propagation times (tPD), skew (tSKEW) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than $50~\text{k}\Omega$.

Enable Input (OE)

The RS7LS104 has an Enable pin (OE) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O VCCB and I/O VCCA pins to a high impedance state. Normal translation operation occurs when the OE pin is equal to a logic high signal. The OE pin is referenced to the VCCA supply and has overvoltage tolerant protection.

Pull-up or Pull-down Resistors on I/O Lines

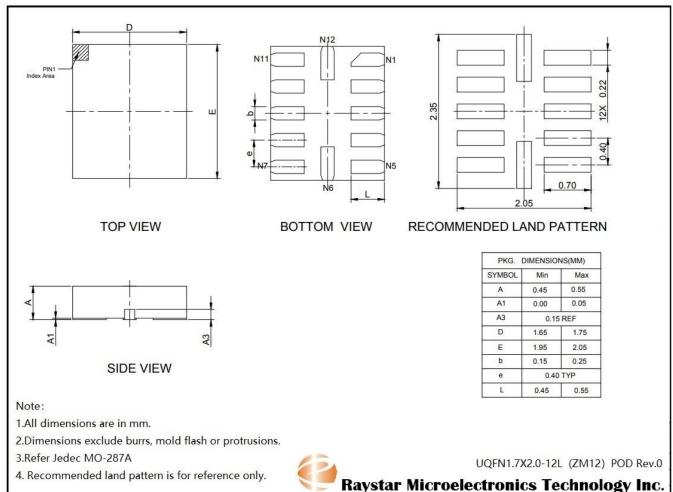

Each A-port I/O has an internal $10k\Omega$ pull-up resistor to VCCA, and each B-port I/O has an internal $10k\Omega$ pull-up resistor to VCCB. If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to VCCA or VCCB (in parallel with the internal $10k\Omega$ resistors).

Device Functional Modes

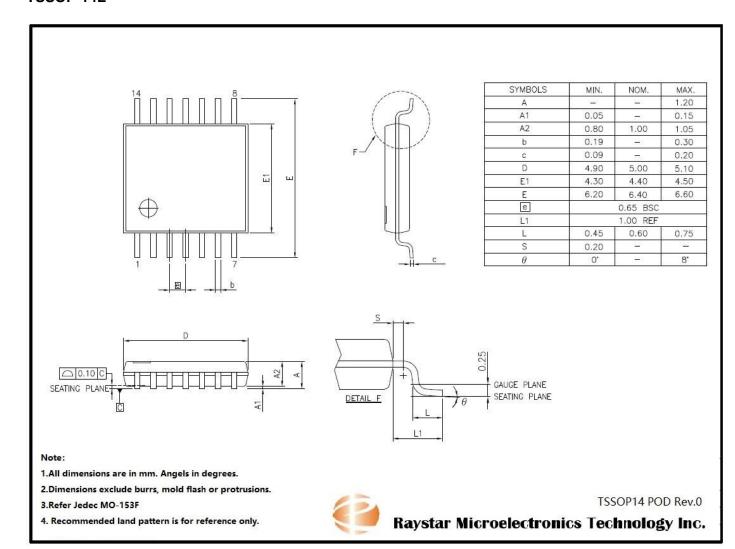
The RS7LS104 device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.

Application Information

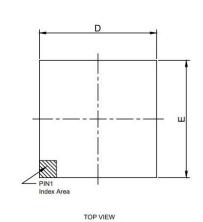
Figure 10 Application Circuit

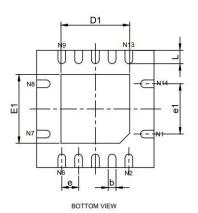

Power Supply Guidelines

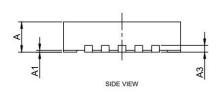
During normal operation, supply voltage V_{CCA} can be greater than, less than or equal to V_{CCB} . The sequencing of the power supplies will not damage the device during the power up operation. For optimal performance, $0.01\mu\text{F}$ to $0.1\mu\text{F}$ decoupling capacitors should be used on the V_{CCA} and V_{CCB} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

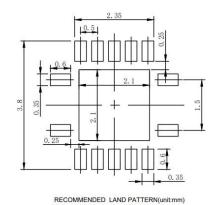

Package Information

UQFN 1.7x2.0-12L




TSSOP-14L




TQFN3.5X3.5-14L (ZB14)

PKG. [DIMENSIO	NS(MM)
SYMBOL	Min	Max
Α	0.80	0.90
A1	0.00	0.05
A3	0.20	REF
D	3.42	3.58
E	3.42	3.58
D1	1.95	2.15
E1	1.95	2.15
b	0.20	0.30
е	0.50	TYP
e1	1.50	TYP
L	0.32	0.48

Note:

- 1.All dimensions are in mm.
- 2.Dimensions exclude burrs, mold flash or protrusions.
- 3.Refer Jedec MO-220
- 4. Recommended land pattern is for reference only.

TQFN 3.5X3.5-14L POD Rev.0

Raystar Microelectronics Technology Inc.

Revision History

Revision	Description	DATE
0.3	Updated TQFN-14 package description	2023/3/7
1.0	1.Modify ICCA、ICCB、ICCZA、ICCZB test condition	2023/11/6
	2.modify TSSOP-14L POD	
1.1	Updated supply power and other parameter spec	2024/2/2
1.2	Modify Revision History update date error from 2021/2/2 to 2024/2/2	2024/3/28