

Features

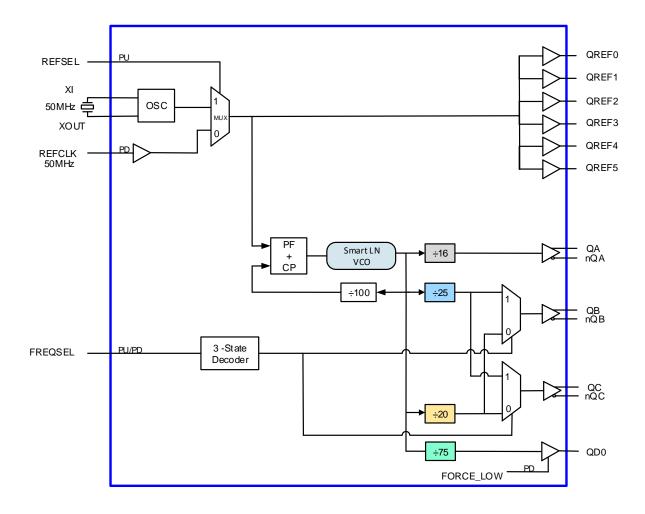
- Seven single-ended LVCMOS outputs, 30Ω output impedance
- Three LVPECL differential output pairs.
- One LVPECL (QA, nQA) output pair:156.25MHz
- Two selectable LVPECL output pairs (QB, nQB and QC, nQC): 100MHz and 125MHz
- One single-ended LVCMOS (QD0) 33.33MHz CPU clock
- Selectable external crystal or single-ended input source
- Crystal oscillator interface designed for 50MHz, parallel resonant crystal
- Provides low jitter, high frequency output
- VCO frequency: 2.5GHz
- RMS phase jitter @ 125MHz, using a 50MHz crystal (12kHz – 20MHz): 0.256ps (Typ.)
- Power supply noise rejection PSNR: -80dB
- 3.3V supply voltage
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Applications

- PCI-e system
- 10Gb Ethernet network
- Communication system

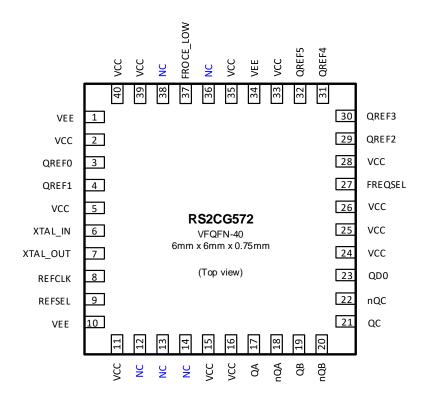
Description

The RS2CG572 is a PLL based clock Generator for use in Ethernet applications. The device has optimal high clock frequency and low phase noise performance, combined with a low power consumption and high power supply noise rejection. Using RSM's latest PLL technology, the RS2CG572 achieves <0.3ps RMS phase jitter performance.


RS2CG572 can synthesize 100MHz, 125MHz, 156.25MHz and a low frequency 33.33MHz CPU clock from a single device. Six LVCMOS outputs also serve as additional buffering of the 50MHz crystal reference.

Order information

Ordering Code	Package	Description
RS2CG572ZDE	ZD	TQFN-40L_6X6mm



Functional Block Diagram

Pin Configuration

Pin Descriptions

Pin Number	Pin Name	1	Гуре	Description
1, 10, 34	VEE	Power		Negative supply pins.
2, 5, 11, 15, 16, 24,25,26, 28, 33,35, 39, 40	Vcc	Power		Power supply pins. Pins 2, 28, 33 – power supply connection for the 50MHz LVCMOS outputs Pin 5 – power supply connection for the crystal oscillator Pins 11, 15, 26, 35 – power supply connection for the dividers and other core circuitry Pin 16 (vposO) – power supply connection for the differential LVPECL outputs Pin 24, 25 – power supply connection for the 33MHz LVCMOS output Pin 39 – power supply connection for the digital logic Pin 40 – power supply connection for the PLL
3, 4,29,30, 31, 32	QREF0, QREF1, QREF2, QREF3, QREF4, QREF5	Output		Single-ended outputs. 3.3V LVCMOS/LVTTL reference levels.
6,7	XTAL_IN, XTAL_OUT	Input		Parallel resonant crystal interface. XTAL_OUT is the output, XTAL_IN is the input.
8	REFCLK	Input	Pulldown	Single-ended LVCMOS/LVTTL reference clock input.
9	REFSEL	Input	Pullup	Reference select pin. When HIGH, selects crystal. When LOW, selects REFCLK. See Table 3A. LVCMOS/LVTTL interface levels.

12,13,14,36, 38	NC			No connect.
17, 18	QA, nQA	Output		156.25MHz differential output. LVPECL interface levels.
19, 20	QB, nQB	Output		100MHz differential output. LVPECL interface levels.
21, 22	QC, nQC	Output		125MHz differential output. LVPECL interface levels.
23	QD0	Output		33.33MHz Single-ended output. 3.3V LVCMOS/LVTTL reference level.
27	FREQSEL	Input	Pullup/ Pulldown	Frequency select pin. See Table 3B. LVCMOS/LVTTL interface level.
37	FORCE_LOW	Input	Pulldown	Forces the QD0 output into a low state. See FORCE_LOW Function Table. LVCMOS/LVTTL interface level.

Pin Characteristics

Symbol	Parameter		Test Conditions	MIN	TYP	MAX	Units
C _{IN}	Input Capacitance		Crystal Not Included		2		рF
C _{PD}	Power Dissipation Capacitance (per output)	QD0, QREF[0:5]	VCC = 3.6V		6		pF
R _{PULLUP}	Input Pullup Resistor				51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51		kΩ
R _{OUT}	Output Impedance	QD0, QREF[0:5]			30		Ω

4

Function Tables

REFSEL Function table

Inputs REFSEL	Input Source
0	REFCLK
1 (default)	XTAL_IN, XTAL_OUT

FREQSEL Function Table

Inputs	Output Fre	quency (MHz)
FREQSEL	QB, nQB	QC, nQC
0	125	125
1	100	100
Float (default)	125	100

FORCE_LOW Function Table

Inputs	Output Frequency (MHz)
FORCE_LOW	QD0
0 (default)	33.33
1	Disabled

Absolute Maximum Ratings

Exposure to absolute Max rating conditions for extended periods may affect product reliability. Stresses beyond those listed under Absolute Max Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied.

Symbol	MIN	TYP	MAX	Unit
Supply Voltage, V _{CC}	3	3.3	3.6	V
Inputs, V _I XTAL_IN Other Inputs			0 to 2 -0.5 to VCC + 0.5	V
Outputs, IO (LVCMOS)			-0.5 to VCC + 0.5	V
Outputs, IO (LVPECL) Continuous Current Surge Current Surge Current			50 100	mA
Package Thermal Impedance, θJA			37.7°C /W (0 mps)	°C
Max Junction Temperature, TJMAX			150	ç
Storage Temperature, TSTG			-65 to 150	°C

Recommended Operating Condition

Symbol	Parameter	MIN	TYP	MAX	Units
ТА	Ambient air temperature	-40		85	°C
TJ	Junction temperature			125	°C

Note 1: It is the user's responsibility to ensure that device junction temperature remains below the Max allowed;

Note 2: All conditions in the table must be met to guarantee device functionality.

Note3: The device is verified to the Max operating junction temperature through simulation.

DC Electrical Characteristics

Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
VCC	Power Supply Voltage		3.0	3.3	3.6	V
IEE	Power Supply Current	No Load			250	mA

LVCMOS/LVTTL DC Characteristics, VCC = $3.3V \pm 0.3V$, TA = -40° C to 85° C

Symbol	Paran	neter	Test Conditions	MIN	TYP	MAX	Units
VIH	Input High Voltage	REFSEL, FORCE_LOW		2		V _{CC} + 0.3	V
	· sgs	FREQSEL		VCC - 0.4			V
V _{IL}	Input Low Voltage	REFSEL, FORCE_LOW		-0.3		0.8	V
	vollago	FREQSEL				0.4	V
V _{IM}	Input Medium Voltage	FREQSEL		V _{CC} /2 - 0.1		V _{CC} /2 + 0.1	٧
Iн	Input High	REFCLK, FREQSEL, FORCE_LOW	VCC = 3.6V VIN = 3.6V			150	μA
	Current	REFSEL	VCC = 3.6V VIN = 3.6V			5	μΑ
lu	Input Low	REFCLK, FORCE_LOW	VCC = 3.6V, VIN = 0V	-5			μΑ
1 1 1 1 1	Current	REFSEL, FREQSEL	VCC = 3.6V, VIN = 0V	-150			μA
VOH	Output High Voltage; Note 1		$V_{CC} = 3.3V \pm 0.3V$	2.3			V
VOL	Output Low Voltage	; Note 1	$V_{CC} = 3.3V \pm 0.3V$			0.8	V

NOTE 1: Outputs terminated with 50Ω to Vcc/2. See Parameter Measurement Information, Output Load Test Circuit diagrams.

LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$, $T_A = -40$ °C to 85°C

	· · · · · · · · · · · · · · · · · · ·								
Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units			
VOH	Output High Voltage; Note 1		V _C C – 1.4		VCC - 0.8	V			
VOL	Output Low Voltage; Note 1		VCC - 2.0		VCC - 1.6	V			
VsWING	Peak-to-Peak Output Voltage Swing		0.6		1.0	٧			

Note 1: Outputs terminated with 50ohm V_{CC} – 2V

Crystal Characteristics

or your on ar actorion co					
Parameter	Test Conditions	MIN	TYP	MAX	Units
Mode of Oscillation			Fundamenta	al	
Frequency			50		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

AC Electrical Characteristics

LVPECL AC Characteristics, $V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°

Symbol	Parameter		Test Conditions	MIN	TYP	MAX	Units
f _{IN}	Input Frequency				50		MHz
f _{OUT}	Output I	requency		100		156.25	MHz
	RMS Phase Jitter (Random) Note 1		156.25MHz fOUT, 50MHz crystal Integration Range:12kHz – 20MHz		0.233		ps
tjit(θ)			125MHz f _{OUT} , 50MHz crystal Integration Range: 12kHz – 20MHz		0.260		ps
			100MHz fOUT, 50MHz crystal Integration Range: 12kHz – 20MHz		0.299		ps
tsk(o)	Output Ske	ew; Note 2, 3	Measured on the Rising Edge			40	ps
PSNR	Power	Pin40(VCC)	From DC to 8MHz, FORCE_LOW = HIGH		-75		dB
· Orac	Supply Noise Reduction Pin40(VCC)		From DC to 3MHz, FORCE_LOW = LOW		-80		dB
t_R / t_F	Output Rise/Fal	l Time	20% to 80%	150		550	ps
ODC	Output Duty Cyc	cle		48		52	%

Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions

Note 1: Refer to the Phase Noise Plot.

Note 2: This parameter is defined in accordance with JEDEC Standard 65.

Note 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoints

AC Characteristics for Single Side Band Power Levels (LVPECL Outputs)

 $V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$, $T_A = 25$ °C

Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier			-122		dBc/Hz
Φ _N (10k)	Single-side band phase noise, 10kHz from Carrier			-133		dBc/Hz
Φ _N (100k)	Single-side band phase noise, 100kHz from Carrier	156.25MHz, 33.33MHz Output disabled		-136		dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier			-142		dBc/Hz
Φ _N (10M)	Single-side band phase noise, 10MHz from Carrier			-155		dBc/Hz
Φ _N (20M)	Single-side band phase noise, 20MHz from Carrier			-156		dBc/Hz
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier	125MHz,		-125		dBc/Hz
Φ _N (10k)	Single-side band phase noise, 10kHz from Carrier	33.33MHz Output disabled		-135		dBc/Hz

Φ _N (100k)	Single-side band phase noise, 100kHz from Carrier		-138	dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier		-144	dBc/Hz
Φ _N (10M)	Single-side band phase noise, 10MHz from Carrier		-155	dBc/Hz
Φ _N (20M)	Single-side band phase noise, 20MHz from Carrier		-156	dBc/Hz
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier		-126	dBc/Hz
Φ _N (10k)	Single-side band phase noise, 10kHz from Carrier		-136	dBc/Hz
Φ _N (100k)	Single-side band phase noise, 100kHz from Carrier	100MHz,	-139	dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier	33.33MHz Output disabled	-145	dBc/Hz
Φ _N (10M)	Single-side band phase noise, 10MHz from Carrier		-154	dBc/Hz
Φ _N (20M)	Single-side band phase noise, 20MHz from Carrier		-154	dBc/Hz

Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

LVCMOS AC Characteristics, $V_{CC} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

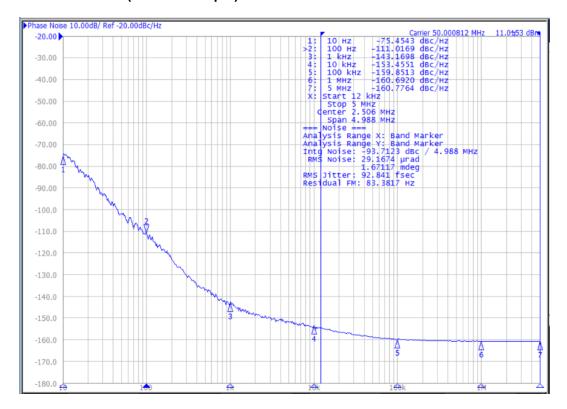
Symbol	Parameter		Test Conditions	MIN	TYP	MAX	Units
f _{IN}	Input Frequency	y			50		MHz
f _{OUT}	Output Frequen	су		33.33		50	MHz
			33.33MHz fOUT, 50MHz crystal Integration Range: 12kHz – 5MHz		0.213		ps
tjit(θ)	RMS Phase Jitte (Random) NOTE	≣ 1	50MHz fOUT, 50MHz crystal Integration Range: 12kHz – 5MHz		0.120		ps
tsk(o)	Output Skew; NOTE 2, 3	QREF[0:5]	Measured on the Rising Edge			50	ps
PSNR	Power Supply Noise	Pin4,(VCC)	From DC to 6.25MHz		-80		dB
t _R / t _F	Output Rise/Fal	l Time	20% to 80%		700		ps
ODC	Output Duty Cy	cle		48		52	%

Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions

Note 1: Refer to the Phase Noise Plot.

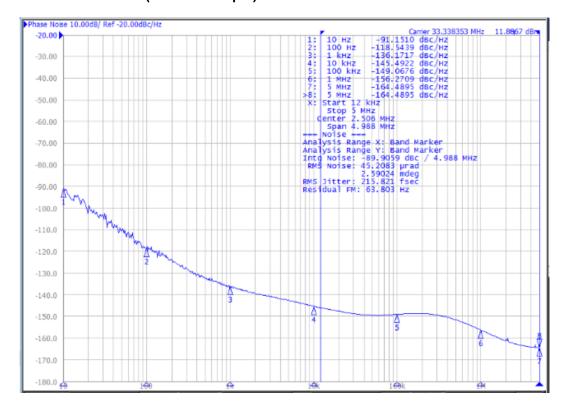
Note 2: This parameter is defined in accordance with JEDEC Standard 65.

Note 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{CC}/2.

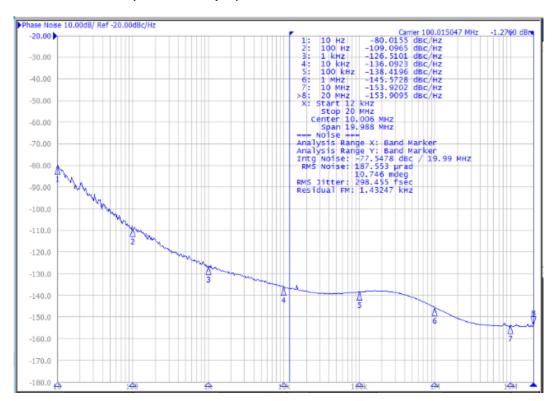

AC Characteristics for Single Side Band Power Levels (LVCMOS Outputs)

 $V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$, $T_A = 25$ °C

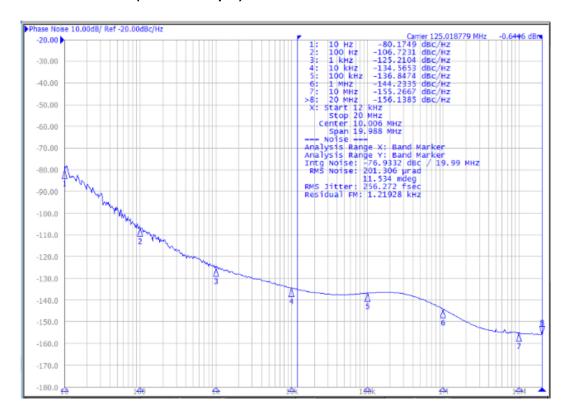
Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier			-136		dBc/Hz
Ф _N (10k)	Single-side band phase noise, 10kHz from Carrier			-146		dBc/Hz
Ф _N (100k)	Single-side band phase noise, 100kHz from Carrier	33.33MHz		-150		dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier			-156		dBc/Hz
Φ _N (5M)	Single-side band phase noise, 5MHz from Carrier			-164		dBc/Hz
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier	50MHz		-143		dBc/Hz
Ф _N (10k)	Single-side band phase noise, 10kHz from Carrier			-153		dBc/Hz
Ф _N (100k)	Single-side band phase noise, 100kHz from Carrier			-159		dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier			-160		dBc/Hz
Φ _N (5M)	Single-side band phase noise, 5MHz from Carrier			-160		dBc/Hz


Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

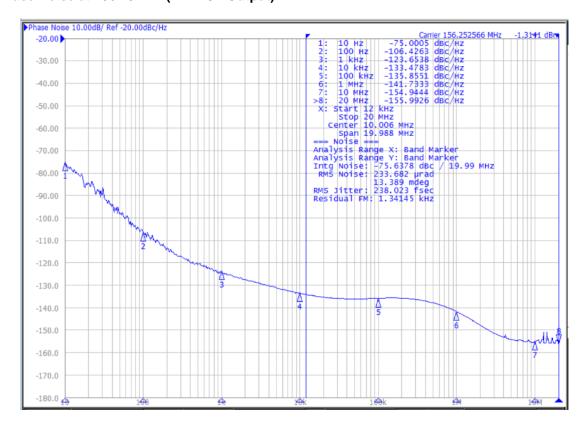
Typical Phase Noise at 50MHz (LVCMOS Output)



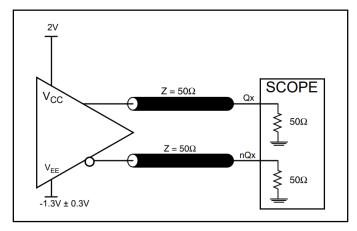
Typical Phase Noise at 33.33MHz (LVCMOS Output)



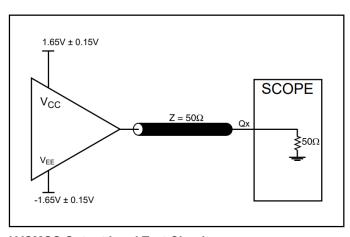
Typical Phase Noise at 100MHz (LVPECL Output)

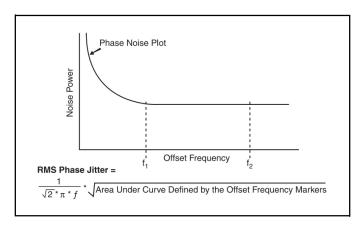


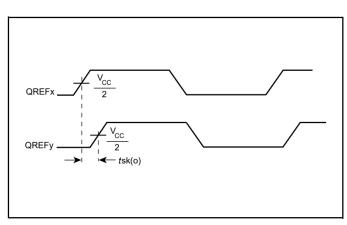
Typical Phase Noise at 125MHz (LVPECL Output)



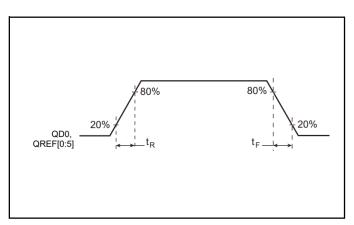
Typical Phase Noise at 156.25MHz (LVPECL Output)

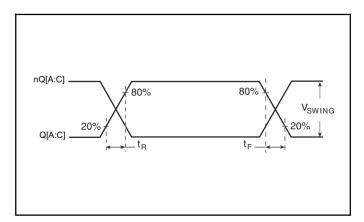


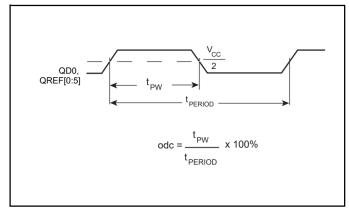

Parameter Measurement Information


LVPECL Output Load Test Circuit

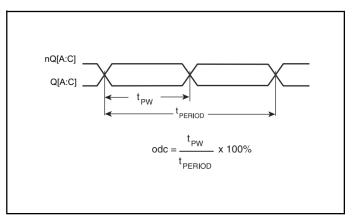

LVCMOS Output Load Test Circuit


Phase Jitter


LVCMOS Output Skew



LVPECL Output Skew


LVCMOS Output Rise/Fall Time

LVPECL Output Rise/Fall Time

LVCMOS Output Duty Cycle/Pulse Width/Period

LVPECL Output Duty Cycle/Pulse Width/Period

Applications Information

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 1A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition,matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 500hm applications, R1 and R2 can be 100 . This can also be accomplished by removing R1 and making R2 500hm . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface

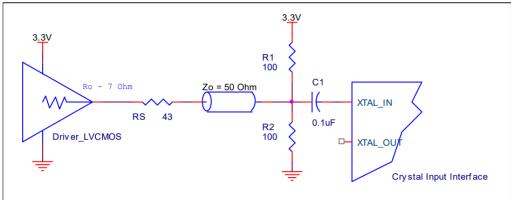
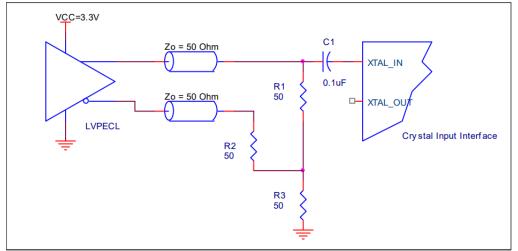



Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 2*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

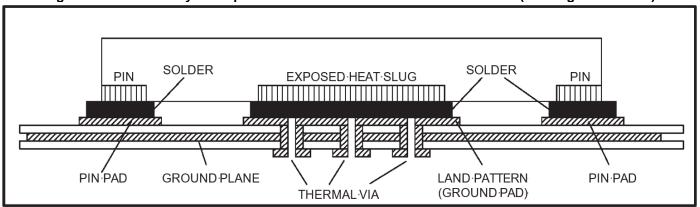


Figure 2. P.C. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs.

Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality.

These outputs are designed to drive 500hm transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion.

Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 3A. 3.3V LVPECL Output Termination

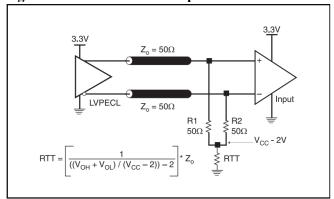
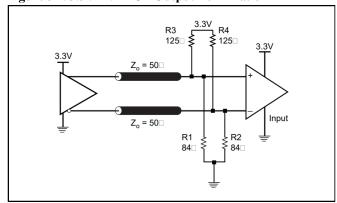



Figure 3B. 3.3V LVPECL Output Termination

Recommendations for Unused Input and Output Pins

Inputs:

REFCLK Input

For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REFCLK to ground.

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

LVPECL Outputs:

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated

Power Considerations

This section provides information on power dissipation and junction temperature for the RS2CG572. Equations and example calculations are also provided.

Power Dissipation

The total power dissipation for the RS2CG572 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{CC} = 3.6V$, which gives worst case results.

Note: Please refer to Section 3 for details on calculating power dissipated due to loading.

Core and LVPECL Output Power Dissipation

Power (core)MAX = VCC_MAX * IEE_MAX = 3.6V * 250mA = 900mW

Power (outputs)MAX = 32mW/Loaded Output pair

If all outputs are loaded, the total power is 3 * 32mW = 96mW

Dynamic Power Dissipation at 33.3333MHz and 50MHz

Power (33.33MHz) = CPD * Frequency * (VCC)2 * # of outputs = 6pF * 33.3333MHz * (3.6V)2 * 1= 2.592mW Power (50MHz) = CPD * Frequency * (VCC)2 * # of outputs = 6pF * 50MHz * (3.6V)2 * 6 = 11.664mW

Total Power Dissipation

Total Power

- = Power (Core) + Power (Output) + Dynamic Power (33.3333MHz) + Dynamic Power (50MHz)
- = 900mW + 96mW + 2.592mW + 11.66mW
- = 1010.252mW

Junction Temperature

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows:

Tj = JA * Pd_total + TA

Tj = Junction Temperature

JA = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation

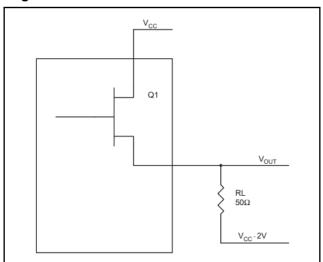
is in section 1 above) TA = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance
JA must be used. Assuming no air flow and a multi-layer board, the appropriate value is 37.7°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 1.010\text{W} * 37.7^{\circ}\text{C/W} = 123.1^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Thermal Resistance θJA for 40 Lead VFQFN Forced Convection

θ _{JA} by Velocity							
Meters per Second	0	1	2.5				
Multi-Layer PCB, JEDEC Standard Test Boards	37.7°C/W	31.6°C/W	28.8°C/W				

Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pairs. LVPECL output driver circuit and termination are shown in Figure 5.

Figure 5. LVPECL Driver Circuit and Termination

To calculate power dissipation due to loading, use the following equations which assume a 50 $\,$ load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, V_{OUT} = V_{OH} MAX = V_{CC}MAX -0.8V
 (V_{CC}MAX V_{OH}MAX) = 0.8V
- For logic low, V_{OUT} = V_{OL}MAX = V_{CC}MAX 1.6V
 (V_{CC} MAX V_{OL} MAX) = 1.6V

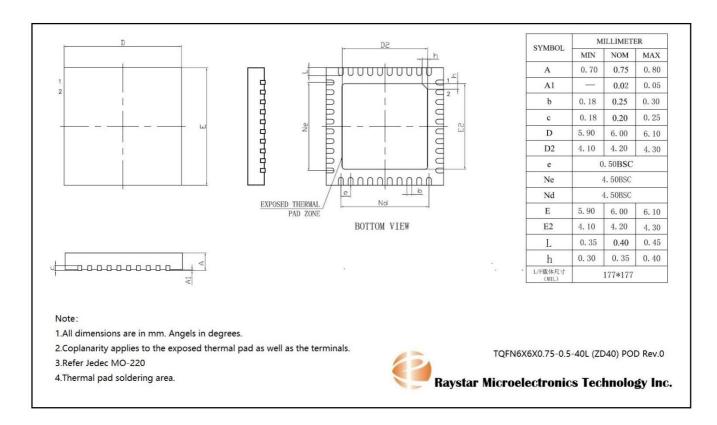
Pd_H is power dissipation when the output drives high. Pd L is the power dissipation when the output drives low.

$$\begin{array}{l} {\sf Pd_H} = [({\sf V}_{\sf OH_MAX} - ({\sf V}_{\sf CC_MAX} - 2{\sf V}))/{\sf R}_{\sf L}] * ({\sf V}_{\sf CC_MAX} - {\sf V}_{\sf OH_MAX}) = [(2{\sf V} - ({\sf V}_{\sf CC_MAX} - {\sf V}_{\sf OH_MAX}))/{\sf R}_{\sf L}] * ({\sf V}_{\sf CC_MAX} - {\sf V}_{\sf OH_MAX}) = [(2{\sf V} - 0.8{\sf V})/50 \] * 0.8{\sf V} = \textbf{19.2mW} \\ \end{array}$$

$$\begin{array}{l} {\sf Pd_L} = [({\sf VOL_MAX} - ({\sf VCC_MAX} - 2{\sf V}))/{\sf RL}] \ ^* \ ({\sf VCC_MAX} - {\sf VOL_MAX}) = [(2{\sf V} - ({\sf VCC_MAX} - {\sf VOL_MAX}))/{\sf RL}] \ ^* \ ({\sf VCC_MAX} - {\sf VOL_MAX}) = [(2{\sf V} - 1.6{\sf V})/50 \] \ ^* \ 1.6{\sf V} = \textbf{12.8mW} \\ \end{array}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW

Reliability Information


θ_{JA} vs. Air Flow Table for a 40 Lead VFQFN

θ _{JA} vs. Air Flow							
Meters per Second	0	1	2.5				
Multi-Layer PCB, JEDEC Standard Test Boards	37.7°C/W	31.6°C/W	28.8°C/W				

Package information

Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

Revision History

Revision	Description	Date
0.9	Preliminary	2023/9/18
1.0	Initial release	2024/01/08