Features

- Precision supply-voltage monitor
 - 4.3V(RS/IT812M), 4.0V(RS/IT812J)
 - 3.08V(RS/IT812T), 2.93V(RS/IT812S)
 - 2.63V(RS/IT812R), 2.32V(RS/IT812Z)
 - 1.5~2.2V (Contact us)
- 140ms(min) reset pulse width
- Push-Pull /RESET Output Configurations
- Debounced CMOS-compatible manual-reset input
- 10µA Supply Current
- Guaranteed Reset(/Reset) Valid to $V_{CC} = +1.0V$
- Power Supply Transient Immunity
- No External Components

Ordering Information

Part Number	Package
RS/IT812XTB	Lead free and Green SOT143

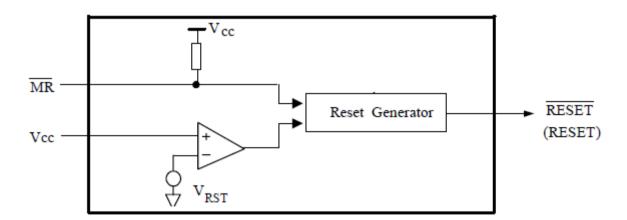
Note: "x" refers to voltage range, see below table.

Description

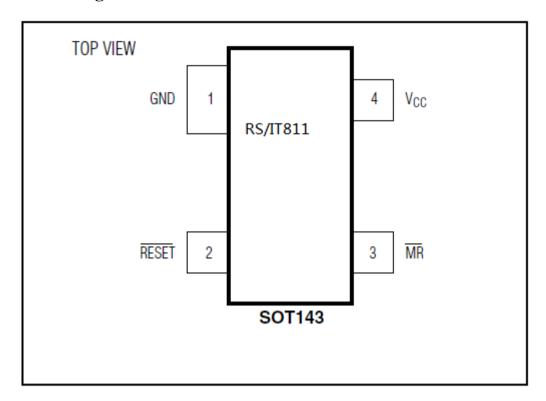
The RS/IT812 are microprocessor (μP) supervisory circuits used to monitor the power supplies in μP and

Suffix: X—Monitored Voltage

X	M	J	T	S	R	Z
Reset Threshold (V)	4.3	4.0	3.08	2.93	2.63	2.32V


Block Diagram

digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +3.3V, +3.0V, or 2.5V powered circuits.


These circuits perform a single function: they assert a reset signal whenever the VCC supply voltage declines below a preset threshold or Manual -reset, keeping it asserted for at least 140ms. Reset thresholds suitable for operation with a variety of supply voltages are available.

The RS/IT812 have push-pull outputs and have an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1V.

Low supply current makes the RS/IT812 ideal for use in portable equipment. The ICs are available in 4 pin SOT143 packages.

Pin Configuration

Pin Description

III Des	in Description					
Pin	Type	Description				
VCC	-	Supply Voltage. Reset is asserted when V_{CC} drops below the Reset Threshold Voltage (V_{RST}) . Reset remains asserted until V_{CC} rises above V_{RST} and keep asserted for the duration of the Reset Timeout Period (t_{RS}) once V_{CC} rises above V_{RST} .				
GND	-	Ground				
RESET	O	Active-High Reset Output (Push-Pull). It goes High when Vcc is below the reset threshold. It remains high for about 200ms after Vcc rises above the reset threshold (V _{RST}).				
MR	Ι	Manual-Reset: (CMOS). Active low. Pull low to force a reset. Reset remains asserted for the duration of the Reset Timeout Period after MR transitions from low to high. Leave unconnected or connected to VCC if not used.				

Functional Description

Reset Output

A microprocessor (μP) reset input starts the μP in a known state. Whenever the μP is in an unknown state, it should be held in reset. The supervisory circuits assert reset during power-up and prevent code execution errors during power-down or brownout conditions

On power-up, once Vcc reaches about 1.0V, /RESET is a guaranteed logic high of 0.8Vcc or more. As Vcc rises, /RESET stays high. When Vcc rises above the reset threshold, an internal timer releases RESET after about 200ms. RESET pulses high whenever Vcc drops below the reset threshold, i.e. brownout condition. If brownout occurs in the middle of a previously initiated reset pulse, the pulse continues for at least another 200ms. On power-down, once Vcc falls below the reset threshold, /RESET

Data Sheet RS/IT812x Reset IC

stays low and is guaranteed to be 0.8Vcc or more until Vcc drops below 1.0V. Reset Timing Diagram shows the timing relationship.

Manual Reset

The manual-reset input (MR) allows reset to be triggered by a push button switch. MR has an internal pullup resistor, so it can be left open when not used.

Data Sheet RS/IT812x Reset IC

Maximum Ratings

Supply Voltage to Ground Potential (Vcc to GND)0.3V to $+6.0$ V DC Input Voltage (All inputs except Vcc and GND)0.3V to $V_{CC}+0.3$ V DC Output Current (All outputs)20mA
DC Output Current (All outputs)
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

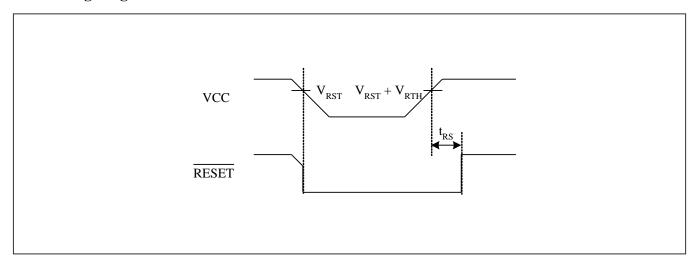
Recommended Operation Conditions

Sym	Description	Test Conditions	Min	Тур	Max	Unit
	Supply Voltage for 812(L/M)	-	4.5	5.0	5.5	V
V_{CC}	Supply Voltage for 812(T/S)	-	3.0	3.3	5.5	V
	Supply Voltage for 812(R)	-	2.7	3.0	5.5	V
T_A	Operating Temperature	-	-40	i	85	$^{\circ}$

DC Electrical Characteristics

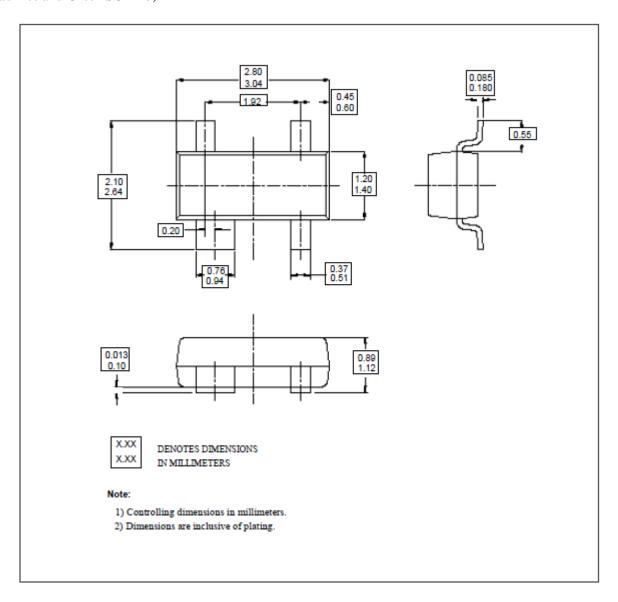
 $(V_{CC} = V_{RN} + 5\% \text{ to } 5.5V, T_A = -40 \sim 85 \text{ C}, \text{ unless otherwise noted.})(\text{Note } 1)$

Symbol	Description	Test Conditions		Min	Тур	Max	Unit	
V _{CC}	Operating Voltage Range	-		1.0	1	5.5	V	
I_{CC}	Supply Current	Vcc < 5.5V, IT82	xxL/M	-	10	30		
I_{CC}	Supply Current	Vcc < 3.6V, IT82	xxR/S/T/Z	-	9	30	μΑ	
		T - 25 %	All	V _{RN} -1.5%	V_{RN}	$V_{RN}+1.5\%$		
		T _A = 25 ℃	All	V _{RN} - 1.5%	V_{RN}	$V_{RN} + 1.5\%$		
V _{RST}			All	V _{RN} - 2.5%	V_{RN}	$V_{RN} + 2.5\%$	V	
(V _{RTH} -)	edge)(Note 2)	$T_A = -40 \sim 85 \text{C}$	All	V _{RN} - 2.5%	V_{RN}	V _{RN} + 2.5%		
V _{RTH}	Reset Threshold Hysteresis (Note 2)	Vcc varies between $V_{RN} \pm 5\%$ (Only for 812L/M)		-	50	-	mV	
		$Vcc \ge 4.5V$ Isou	rce=800 μA	Vcc-1.5	-	-		
3.7			rce=500 μA	0.8×Vcc	-	-	* 7	
V_{OH}	Output High Voltage	Vcc ≥ 1.8V Isource=150 μA		0.8×Vcc	-	-	V	
		Vcc ≥ 1.0V Isource=4 μA		0.8×Vcc	-	-		
	Output Low Voltage	Vcc ≥ 4.5V Isink=3.2mA		-	-	0.4		
V_{OL}		Vcc ≥ 2.7V Isink=1.2mA		-	-	0.3	V	
		Vcc ≥ 1.0V Isink=100 μA		-	1	0.3		

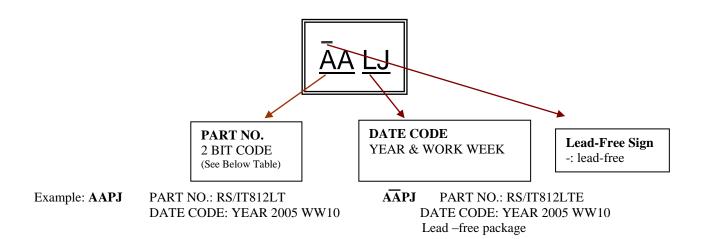

Note: 1. Parameters of room temperature guaranteed by production test and parameters of full-temperature guaranteed by design.

2. V_{RST} is Reset threshold voltage when V_{CC} falls from high to low level. V_{RN} is nominal reset threshold voltage.

AC Electrical Characteristics


Symbol	Description	Test Conditions	Min	Тур	Max	Unit
trs	Reset Pulse Width	T _A = 25 ℃	140	240	400	ms
tmr	MR Pulse Width	T _A = 25 ℃	1			us

Reset Timing Diagram



Mechanical Information

TE (Lead free and Green SOT143)

Marking Information

RayStar Microelectronics Technology Inc.

Data Sheet RS/IT812x Reset IC

No.	Part No.	Code
1	RS/IT812L	AO
2	RS/IT812M	AP
3	RS/IT812T	AQ
4	RS/IT812S	AR
5	RS/IT812R	AS

Notes

China: No.1236,ZhaoChong Road, QinPu district,Shanghai , China

Tel: (86)21-13774216189 18917017776

(86)755-18675529675

USA: 3001 Copper Road, Santa, Clara, CA95051, America.

Tel:001-408-4268525